Environmental impacts of urban development and sustainable landscape management: the case of Muratpaşa, Antalya

Keywords: sustainability, urban development, urban green areas, land use estimation, carbon emission, ArcGIS, artificial neural network, Muratpaşa, Antalya

Abstract

Problem statement. Intensive urbanization stands out as a phenomenon that significantly affects environmental change and raises serious concerns about the sustainability of cities. The pressure of human activities on ecological areas causes regional ecological networks to shrink and become less connected, leads to increased pollution, deterioration of ecological functions and poses serious threats to the sustainable development of cities. This study comprehensively examines the environmental impacts of urbanization and its consequences on urban landscapes in the Muratpaşa district of Antalya. The research focuses specifically on green space distribution, carbon emissions, and land use changes, assessing how these factors influence sustainable urban development. Muratpaşa, characterized by rapid urbanization and population growth, represents a critical area for environmental and ecological sustainability.

Purpose. The primary aim of the research is to analyze the environmental impacts of urban development in Muratpaşa, to reveal the effects on the urban landscape by using the variables affected in this process, identify land use changes, and make future projections. The study seeks to address inequalities in green space distribution, carbon emissions, and the evolving dynamics of urban landscapes, providing recommendations for sustainable urban planning.

Research methods. The study employed CORINE land cover data, Landsat satellite imagery, the GHG Protocol, artificial neural networks, and Geographic Information Systems (ArcGIS). Analyses included green space evaluation, land use classification, carbon emission calculations, and projections for land use in 2040. Additionally, the distribution of green spaces was analyzed at the neighborhood level based on population density.

Research results. The research reveals a dramatic increase in motor vehicle numbers and carbon emissions in Muratpaşa between 1994 and 2023. During the same period, green spaces declined, while urbanization accelerated. Coastal neighborhoods had higher proportions of green spaces, whereas inland areas showed significantly lower levels. Projections for 2040 indicate further reductions in green spaces and increased urbanization. CORINE data demonstrated that agricultural lands and natural habitats are under significant pressure from urban development.

Conclusion. The Muratpaşa district is at a critical juncture in terms of environmental sustainability. Reducing land use changes, carbon emissions, and inequalities in green space distribution requires the adoption of sustainable urban planning strategies. Preserving green spaces, supporting biodiversity, and minimizing the carbon footprint are essential for achieving comprehensive sustainability policies.

Downloads

Download data is not yet available.

Author Biographies

Furkan Genişyürek, Akdeniz University

PhD student (Geography), Department of Geography

Liudmyla Niemets, V. N. Karazin Kharkiv National University

DSc (Geography), Professor, Head of the K. Niemets Department of Human Geography and Regional Studies

Mehmet Tahsin Şahin, Akdeniz University

Assistant Professor, Department of Geography

Kateryna Sehida, V. N. Karazin Kharkiv National University

DSc (Geography), Professor, K. Niemets Department of Human Geography and Regional Studies

References

He, H. Z. (2003). The development trend of world urbanization. Intell. Build. City Information 4, 74-75.

Andersson, E. (2006). Urban landscapes and sustainable cities. Ecology and Society 11(1): 34.

Liu, W., Li, H., Xu, H., Zhang, X. & Xie, Y. (2023). Spatiotemporal distribution and driving factors of regional green spaces during rapid urbanization in Nanjing metropolitan area, China. Ecological Indicators, 148, 110058. https://doi.org/10.1016/j.ecolind.2023.110058

Landsberg, H. E. (1981). The urban climate. Academic Press.

Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., ... Purvis, A. (2015). Global effects of land use on local terrestrial biodiversity. Nature, 520(7545), 45-50. https://doi.org/10.1038/nature14324

Khalilov, I. & Eminov, F. (2024). Against the background of global climate changes, the current ecological situation of Azerbaijan’s water resources and the directions of efficient use. Geology Geography Ecology, 61, 392–398. https://doi.org/10.26565/2410-7360-2024-61-31

Dadashpoor, H., Azizi, P. & Moghadasi, M. (2019). Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of Total Environment, 655, 707-719. https://doi.org/10.1016/j.scitotenv.2018.11.267

Hu, M. & Xia, B. (2019). A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China. Land Degrad. Dev. 30, 359-370. https://doi.org/10.1002/ldr.3221

An, Y., Liu, S. L., Sun, Y. X., Shi, F. N. & Beazley, R. (2021). Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landscape Ecology. 36, 2059-2076. https://doi.org/10.1007/s10980-020-01027-3

Aminzadeh, B. & Khansefid, M. (2010). A case study of urban ecological networks and a sustainable city: Tehran's metropolitan area. Urban Ecosystem, 13, 23-36. https://doi.org/10.1007/s11252-009-0101-3

Abdul-Manan, A. F. N. (2021). How to avoid a climate disaster, by bill Gates. Environmental Innovation and Societal Transitions, 40, 60-61. https://doi.org/10.1016/j.eist.2021.05.004

Garmestani, A. S., Allen, C. R., & Gunderson, L. H. (2009). Panarchy: discontinuities reveal similarities in the dynamic system structure of ecological and social systems. Ecology and Society, 14(1), 15.

Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-Carmona, P., Halik, Ü., Sawut, M., & Caetano, M. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing: Official Publication of the International Society for Photogrammetry and Remote Sensing (ISPRS), 89, 59-66. https://doi.org/10.1016/j.isprsjprs.2013.12.010

Roussel, F. & Alexandre, F. (2021). Landscape ecological enhancement and environmental inequalities in peri-urban areas, using flora as a socio-ecological indicator-The case of the greater Paris area. Landscape and Urban Planning, 210, 104062. https://doi.org/10.1016/j.landurbplan.2021.104062

Sharifi, A. (2019). Resilient urban forms: A macro-scale virtualysis. Cities, 85, 1-14. https://doi.org/10.1016/j.cities.2018.11.023

Genişyürek, F., Ertek, Ş., & Ertürk, M. (2022). Spatial and Temporal Assessment of Phaselis and its Surroundings with Multi-temporal Satellite Imagery. Zenodo (CERN European Organization for Nuclear Research). https://doi.org/10.5281/zenodo.7351470

Gunawardhana, L. N., Kazama, S. & Kawagoe, S. (2011). Impact of urbanization and climate change on aquifer thermal regimes. Water Resources Management, 25, 3247-3276. https://doi.org/10.1007/s11269-011-9854-6

Song, X., Feng, Q., Xia, F., Li, X., & Scheffran, J. (2021). Impacts of changing urban land-use structure on sustainable city growth in China: A population-density dynamics perspective. Habitat International, 107(102296), 102296. https://doi.org/10.1016/j.habitatint.2020.102296

Breuste J., Niemelä J. & Snep R. P. H. (2008) Applying landscape ecological principles in urban environments. Landscape Ecology, 23: 1139-1142. DOI: https://doi.org/10.1007/s10980-008-9273-0

Copernicus Land Monitoring Service. CORINE land cover. Retrieved June 12, 2024, from https://land.copernicus.eu/en/products/corine-land-cover

Krecl, P., Johansson, C., Norman, M., Silvergren, S., Burman, L., Mollinedo, E. M. & Targino, A. C. (2024). Long-term trends of black carbon and particle number concentrations and their vehicle emission factors in Stockholm. Environmental Pollution, 347, 123734. https://doi.org/10.1016/j.envpol.2024.123734

Newman, P., Beatley, T., & Boyer, H. (2009). Resilient cities: Responding to peak oil and climate change. Island Press.

Oke, T. R. (1987). Boundary Layer Climates. Routledge.

Büttner, G. (2014). CORINE Land Cover and Land Cover Change Products. In: Manakos, I., Braun, M. (eds) Land Use and Land Cover Mapping in Europe. Remote Sensing and Digital Image Processing, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7969-3_5

Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A. & Cheng, X. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139, 31-52. https://doi.org/10.1016/j.gexplo.2013.08.012

Grimm N. B., Faeth S. H., Golubiewski N. E., Redman C. L., Wu J., Bai X. & Briggs, J. M. (2008) Global change and the ecology of cities. Science, 319: 756-760. https://doi.org/10.1126/science.1150195

Decker, E. H., Elliott, S., Smith, F. A., Blake, D. R., & Rowland, F. S. (2000). Energy and material flow through the urban ecosystem. Annual Review of Energy and the Environment, 25(1), 685-740.

Eğilmez, G. & Park, Y. S. (2014). Transportation related carbon, energy and water footprint analysis of U.S. manufacturing: An eco-efficiency assessment. Transportation Research Part D: Transport and Environment, 32, 143-159. https://doi.org/10.1016/j.trd.2014.07.001

Niemelä J., Kotze J, Venn S, Penev L, Stoyanov I, Spence J., Hartley, D. & de Oca, E. M. (2002). Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: an international comparison. Landscape Ecology, 17: 387-401. https://doi.org/10.1023/A:1021270121630

Quan, J., Zhan, W., Ma, T., Du, Y., Guo, Z., & Qin, B. (2018). An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes. Remote Sensing of Environment, 206, 403-423. https://doi.org/10.1016/j.rse.2017.12.003

Weng, H., Gao, Y., Su, X., Yang, X., Cheng, F., Ma, R., Liu, Y., Zhang, W. & Zheng, L. (2021). Spatial-temporal changes and driving force analysis of green space in coastal cities of southeast China over the past 20 years. Land, 10, 537. https://doi.org/10.3390/land10050537

Wu, J. (2008). Making the case for landscape ecology-an effective approach to urban sustainability. Landscape Journal, 27, 41-50. https://doi.org/10.3368/lj.27.1.41

Aksoy, T., Dabanli, A., Cetin, M., Senyel Kurkcuoglu, M. A., Cengiz, A. E., Cabuk, S. N., Agacsapan, B., & Cabuk, A. (2022). Evaluation of comparing urban area land use change with Urban Atlas and CORINE data. Environmental Science and Pollution Research International, 29(19), 28995-29015. https://doi.org/10.1007/s11356-021-17766-y

Batrymenko, O., Chomko, D. & Tkach, O. (2024). Decarbonization as a multilateral political mechanism for carbon regulation. Geology Geography Ecology, 60, 323–334. https://doi.org/10.26565/2410-7360-2024-60-23

Cui, Q. & Li, Y. (2015). An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries. Applied Energy, 141, 209-217. https://doi.org/10.1016/j.apenergy.2014.12.040

Iukhno, A., Opara, V. & Buzina, I. (2022). Improving of ecological and economic management of land resources by with zonal aspect. Geology Geography Ecology, 56, 277–295. https://doi.org/10.26565/2410-7360-2022-56-21

Lu, H., Xiao, C., Jiao, L., Du, X. & Huang, A. (2024). Spatial-temporal evolution analysis of the impact of smart transportation policies on urban carbon emissions. Sustainable Cities and Society. 101, 105177. https://doi.org/10.1016/j.scs.2024.105177

Zhang, Z. (2018). Artificial Neural Network. In: Multivariate Time Series Analysis in Climate and Environmental Research. Springer, Cham. https://doi.org/10.1007/978-3-319-67340-0_1

Wu, Y.-C., & Feng, J.-W. (2018). Development and application of artificial neural network. Wireless Personal Communications, 102(2), 1645-1656. https://doi.org/10.1007/s11277-017-5224-x

Shu, B., Chen, Y., Zhang, K., Dehghanifarsani, L. & Amani-Beni, M. (2024). Urban engineering insights: Spatiotemporal analysis of land surface temperature and land use in urban landscape. Alexandria Engineering Journal, 92, 273-282. https://doi.org/10.1016/j.aej.2024.02.066

Nor, A. N. M., Corstanje, R., Harris, J. A. & Brewer, T. (2017). Impact of rapid urban expansion on green space structure. Ecological Indicators, 81, 274-284. https://doi.org/10.1016/j.ecolind.2017.05.031

Yang, L., Xian, G., Klaver, J. M., & Deal, B. (2003). Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data. Photogrammetric Engineering and Remote Sensing, 69(9), 1003-1010. https://doi.org/10.14358/pers.69.9.1003

Tabarelli, M., Aguiar, A. V., Ribeiro, M. C., Metzger, J. P., & Peres, C. A. (2010). Prospects for biodiversity conservation in the Atlantic Forest: Lessons from aging human-modified landscapes. Biological Conservation, 143(10), 2328-2340. https://doi.org/10.1016/j.biocon.2010.02.005

Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. G., McCollum, D., Peters, G., Andrew, R., Krey, V., ... & Sutherland, W. J. (2016). Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 6(1), 42-50.

Sun, D. & Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America, Geophysical Research Letter, 34, L24406. https://doi.org/10.1029/2007GL031485

Pickett, S. T., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: Linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics, 32(1), 127-157.

Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities 'just green enough.' Landscape and Urban Planning, 125, 234-244. https://doi.org/10.1016/j.landurbplan.2014.01.017

Şahin, M. T., Hadimli, H., Çakır, Ç., Yasak, Ü., & Genişyürek, F. (2025). The Role of Urban Landscape on Land Surface Temperature: The Case of Muratpaşa, Antalya. Land, 14(4), 663. https://doi.org/10.3390/land14040663

Soldak M., Mezentsev K., Batunova E., Haase A., Haase, D. (2024). Emergent urban resilience in Ukraine: Adapting to polycrisis in times of war. Ekonomichna ta Sotsialna Geografiya, 92, 6–13, https://doi.org/10.17721/2413-7154/2024.92.6-13

Kostrikov, S. V., Niemets, L. M., Sehida, K. Y., Niemets, K. A., & Morar, C. (2018). Geoinformation approach to the urban geographic system research (case studies of Kharkiv region). Visnyk of V. N. Karazin Kharkiv National University, Series "Geology. Geography. Ecology", (49), 107-124. https://doi.org/10.26565/2410-7360-2018-49-09

Morar C., Lukić T., Valjarević A., Niemets L., Kostrikov S., Sehida K., Telebienieva I., Kliuchko L., Kobylin P., Kravchenko K.(2022). Spatiotemporal Analysis of Urban Green Areas Using Change Detection: A Case Study of Kharkiv, Ukraine, Frontiers in Environmental Science, 2022, 10, 823129 https://doi.org/10.3389/fenvs.2022.823129

Valjarević A., Morar C., Brasanac-Bosanac L., Cirkovic-Mitrovic T., Djekic T., Mihajlović M., Milevski I., Culafic G., Luković M., Niemets L., Sehida K., Kaplan G. (2025) Sustainable land use in Moldova: GIS & remote sensing of forests and crops. Land Use Policy, 152, DOI: https://doi.org/10.1016/j.landusepol.2025.107515

Published
2025-06-01
Cited
How to Cite
Genişyürek, F., Niemets, L., Tahsin Şahin, M., & Sehida, K. (2025). Environmental impacts of urban development and sustainable landscape management: the case of Muratpaşa, Antalya. Visnyk of V. N. Karazin Kharkiv National University. Series Geology. Geography. Ecology, (62), 160-173. https://doi.org/10.26565/2410-7360-2025-62-12

Most read articles by the same author(s)

1 2 > >>