Restoration as recovery: participatory urbogeosystemic pedagogy of Karazin University for the Erasmus+ project FutureLand

Keywords: European Nature Restoration law, participatory pedagogy, urbogeosystemic approach, urban ecological system, learning labs, urban remote sensing, LiDAR, ANN

Abstract

Introduction and previous works done. The 2024 European Nature Restoration Law (NRL) introduces binding restoration targets that – for the first time – explicitly include urban habitats. It challenges higher education to prepare practitioners who can bridge technical diagnostics and community priorities. The FutureLand Erasmus+ project answers that call through MOOCs, micro-credentials and participatory Learning Labs. Within FutureLand the authors propose a participatory restoration pedagogy tailored to post-war urban recovery, building on prior urbogeosystemic research with urban remote sensing and open geospatial toolkits. Thus, the main research objective of this paper is to introduce a transferable, trauma‑informed participatory pedagogy.

Exposition of the main research materials. KKNU’s pedagogy rests on a dual representation of the city within the frameworks of the urbogeosystemic approach. The conceptual framework demonstrates how the urbanistic environment (UE), urbogeosystem (UGS), and urban ecological system (UES) are structurally connected: raster diagnostics, vector governance, and socio‑ecological processes converge into a coherent model. All three constituents enable restoration pedagogy to translate spatial evidence into socially legitimate and ecologically grounded urban futures. Together, UE and UGS translate pixel- and point-cloud signals into place-based narratives usable by municipalities. Methodologically, we follow an “Open-Data-First” principle: OpenStreetMap, global DEMs and available municipal LiDAR are combined with pragmatic 2.5D typological heuristics to produce LOD1/1.5 proxies and conditional volume estimates. Multi-method change detection (vector footprint differencing, hybrid volumetric proxies, and airborne LiDAR comparison) generates candidate urban changes that are then verified in participatory annotation workshops. Lightweight, explainable artificial neural networks, trained on community-annotated datasets and interpreted with Grad-CAM and SHAP, support urban pattern recognition, while keeping model decisions transparent and trustworthy. Pedagogically, the Learning Lab – with trauma-informed facilitation, participatory mapping, memory walks and mixed technical–social assignments – yields evidence packages that balance scientific rigor, civic legitimacy and NRL reporting needs. In these labs students, municipal officers, NGOs and residents co-collect, annotate and validate spatial and narrative data. Pilots in Kharkiv show that student–community teams can produce usable restoration scenarios, data-stewardship templates, syllabi, teacher-training modules and containerized software stacks that lower technical barriers for partners.

Conclusion. Our model shows how universities can catalyze ecological recovery and social renewal in urban areas by pairing open, reproducible technical workflows with trauma-aware, community-centered pedagogy. By aligning urbogeosystemic reasoning universities can serve as convenors and translators – producing governance-ready, community-endorsed evidence even in resource-constrained, post-war settings. Our approach is intentionally pragmatic and scalable: open data, modular lab units and clear documentation enable transfer to other cities lacking LiDAR or extensive municipal data. The pedagogical model helps bridge a gap between spatial science and equitable restoration practice, that gap the NRL now requires us to close.

Downloads

Download data is not yet available.

Author Biographies

Sergiy Kostrikov, V. N. Karazin Kharkiv National University

DSc (Geography), Professor, K. Niemets Department of Human Geography and Regional Studies

Liudmyla Niemets, V. N. Karazin Kharkiv National University

DSc (Geography), Professor, K. Niemets Department of Human Geography and Regional Studies

References

Anderson R. K., Landy M., Sanchez V. [and other] (2023). Trauma-informed pedagogy in higher education: Considerations for the future of research and practice. Journal of Trauma Studies in Education, 2(2). Available at: https://journals.library.appstate.edu/index.php/JTSE/article/view/212

Ballard H. L., Belsky J. M. (2010). Participatory action research and environmental learning: Implications for resilient forests and communities. Environmental Education Research, 16(5-6), 611–627. DOI: https://doi.org/10.1080/13504622.2010.505440

Battisti C., Baiani D. S. (Eds.). (2022). Urban agglomeration: Models and strategies for regeneration of residential buildings and outdoor public spaces. IntechOpen. DOI: https://doi.org/10.5772/intechopen.102366

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: State of the art review. ISPRS International Journal of Geo-Information, 4(4), 2842–2889. DOI: https://doi.org/10.3390/ijgi4042842

BirdLife International. (2024). State of the World's Birds: 2024 Annual Update. Available at: https://datazone.birdlife.org/articles/state-of-the-worlds-birds-2024-annual-update

Birney L. B., McNamara D. M. (2023). The Curriculum and Community Enterprise for Restoration Science: Making STEM accessible, equitable, and environmentally relevant. NSF Public Access Repository. Available at: https://par.nsf.gov/biblio/10346894

Boulila W., Ghandorh H., Khan M. [and other] (2021). A novel CNN-LSTM-based approach to predict urban expansion. Ecological Informatics. 64, 101325. DOI: https://doi.org/10.1016/j.ecoinf.2021.101325

Brovelli M. A., Zamboni G. (2018). A New Method for the Assessment of Spatial Accuracy and Completeness of OpenStreetMap Building Footprints. ISPRS International Journal of Geo-Information, 7(8), 289. DOI: https://doi.org/10.3390/ijgi7080289

Brenner C. (2000). Extracting urban objects from airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2), 29–36.

Carello J., Butler L. D. (2015). Practicing what we teach: Trauma-informed educational practice. Journal of Teaching in Social Work, 35(3), 262–278. DOI: https://doi.org/10.1080/08841233.2015.1030059

Cheng L., Wu Y., Tong L., Chen Y., Li M. (2015). Hierarchical registration method for airborne and vehicle LiDAR point cloud. Remote Sensing 7, 13921–13944. https://doi.org/10.3390/rs71013921.

Chevalier J. M., Buckles D. J. (2013). Participatory action research: theory and methods for engaged research. London: Routledge: 496. DOI: https://doi.org/10.4324/9780203107386

Chollet F. (2017). Xception: Deep learning with depth-wise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1800–1807. DOI: https://doi.org/10.1109/CVPR.2017.195

Durrant E., Howson P., Puttick B. [and other] (2023). Existing evidence on the use of participatory scenarios in ecological restoration: a systematic map. Environmental Evidence, 12, 27. DOI: https://doi.org/10.1186/s13750-023-00314-1

Elwood S. (2009). Integrating participatory action research and GIS education: Negotiating methodologies, politics and technologies. Journal of Geography in Higher Education, 33(1), 51–65. DOI: https://doi.org/10.1080/03098260802276565

Elwood S. (2009). Critical issues in participatory GIS: Deconstructing the specter of objectivity. Annals of the Association of American Geographers, 99(1), 128–143. DOI: https://doi.org/10.1080/00045600802633309

European Commission (EC). (2024). Nature Restoration Regulation. European Commission – Environment. Available at: https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-regulation_en

European Parliament (EP) (2024). Legislative resolution of 27 February 2024 on the proposal for a regulation of the European Parliament and of the Council on nature restoration (COM(2022)0304 – C9-0208/2022 – 2022/0195(COD)). Official Journal of the European Union, C/2024/6757. Available at: EUR-Le

Feng H., Chen Y., Luo Z. [and other] (2022). Automated extraction of building instances from dual-channel airborne LiDAR point clouds. International Journal of Applied Earth Observation and Geoinformation, 114, 103042. DOI: https://doi.org/10.1016/j.jag.2022.103042.

Fox H., Cundill G. (2018). Towards increased community-engaged ecological restoration: A review of current practice and future directions. Ecological Restoration, 36(3), 208–218. DOI: https://doi.org/10.3368/er.36.3.208

FutureLand Consortium (FLC). (2025). FutureLand – Nature Restoration: challenges and opportunities for future landscape specialists (KA220 HED application). Unpublished application.

Goodchild M. F. (2009). Geographic information systems and science: Today and tomorrow. International Journal of Geographical Information Science, 23(10), 1371–1374. DOI: https://doi.org/10.1080/19475680903250715

Goodfellow I., Bengio Y., Courville A. (2016). Deep Learning. MIT Press. Available at: https://www.deeplearningbook.org/

He K., Zhang X., Ren S., Sun J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. DOI: https://doi.org/10.1109/CVPR.2016.90

Hussain M., Chen D., Cheng A., Wei H., Stanley D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91–106. DOI: https://doi.org/10.1016/j.isprsjprs.2013.03.006

Johnson-Lawrence V., Sneed R., Dotson K. [and other] (2024). Trauma-informed approaches and community engagement in post-war mapping. National Library of Medicine. RTI Press. Available at: https://www.ncbi.nlm.nih.gov/books/NBK607457/

Kingma D. P., Ba J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980

Kostrikov, S., Serohin, D. (2025). Urban change detection with airborne LiDAR for hostilities’ impact estimation: a case study of Kharkiv. European Journal of Remote Sensing, 58 (1). DOI: https://doi.org/10.1080/22797254.2025.2491750

Kostrikov S. Niemets L., Sehida K. [and other] (2018). Geoinformation approach to the urban geographic system research (case studies of Kharkiv region). Visnyk of V.N. Karazin Kharkiv National University. Series “Geology. Geography. Ecology”, (49), 107-121. DOI: https://doi.org/10.26565/2410-7360-2018-49-09

Kostrikov S., Seryogin D. (2022). Urbogeosystemic Approach to Agglomeration Study within the Urban Remote Sensing Frameworks. Urban Agglomeration. Edited by A. Battisti and S. Baiani: Intech Open, London, Milan, Zagreb. 251-273. DOI: http://dx.doi.org/10.5772/intechopen.102482

Kostrikov S., Niemets L., Robinson D., Mezentsev K., Kravchenko K., Serohin D. (2024). Delineation of the Hostilities’ Impact on Urban Environment by LiDAR Data Processing (a Case Study of Kharkiv). In: Morar, C., Berman, L., Erdal, S., Niemets, L. (eds) Achieving Sustainability in Ukraine through Military Brownfields Redevelopment. NATOARW 2023. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-024-2278-8_22

Kostrikov S. (2025). Analyzing urban morphology changes using neural networks. Visnyk of V.N. Karazin Kharkiv National University. Series Geology. Geography. Ecology, (62), 219-236 https://doi.org/10.26565/2410-7360-2025-62-17

Kostrikov S., Pudlo R., Bubnov D., Vasiliev V. (2020). ELiT, multifunctional web-software for feature extraction from 3D LiDAR point clouds. ISPRS International Journal of Geo-Information. 9(11), 650-885. DOI: http://dx.doi.org/10.3390/ijgi9110650

Kostrikov S., Kravchenko K., Serohin D., Bilianska S., Savchenko A. (2023). The performance of the digital city projects in urban studies of the megalopolises (the case studies of Kharkiv and Dnipro cities). Visnyk of V. N. Karazin Kharkiv National University, series "Geology. Geography. Ecology", (59), 140-165. DOI: https://doi.org/10.26565/2410-7360-2023-59-11

Kostrikov S., Pudlo R., Bubnov D., Vasiliev V., Fedyay Y., 2020. Automated Extraction of Heavyweight and Lightweight Models of Urban Features from LiDAR Point Clouds by Specialized Web-Software. Adv. Sci. Technol. Eng. Syst. J. 5, 72-95. DOI: https://dx.doi.org/10.25046/aj050609

Kowarik I., Fischer L.K., Haase D. [and other] (2025). Promoting urban biodiversity for the benefit of people and nature. Nat. Rev. Biodivers. 1, 214–232. DOI: https://doi.org/10.1038/s44358-025-00035-y

Kravchenko K., Niemets L., Sehida K. (2024). War consequences and prospects for post-war reconstruction (case of Ukrainian urban agglomerations). Visnyk of V. N. Karazin Kharkiv National University. Series Geology. Geography. Ecology, (61), 193-211. DOI: https://doi.org/10.26565/2410-7360-2024-61-16

Langemeyer, J., Busse, S., Arabas, A. et al. (2025). Social-ecological justice in cities: a spatial vulnerability approach. npj Urban Sustain 5, 46. DOI: https://doi.org/10.1038/s42949-025-00234-8

LeCun Y., Bottou L., Bengio Y., Haffne, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. DOI: https://doi.org/10.1109/5.726791

Lin T.-Y., Goyal P., Girshick R., He K., Dollár P. (2017). Focal loss for dense object detection. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2980–2988. DOI: https://doi.org/10.1109/ICCV.2017.324

Lohmus A. (2025).recognizing and mitigating key uncertainties about the future in ecological restoration planning. Restoration Ecology, 32(8), e13321. DOI: https://doi.org/10.1111/rec.70158

Lundberg S. M., Lee S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), 4768–4777. DOI: https://doi.org/10.48550/arXiv.1705.07874

Maas H.-G., Vosselman G. (1999). Two algorithms for extracting building models from raw laser altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 153–163. DOI: https://doi.org/10.1016/S0924-2716(99)00004-0

McMahon B. J. (2023). Trauma-informed pedagogy: A framework for teacher preparation and practice. In E. Stromberg (Ed.), Trauma-Informed Pedagogy in Higher Education: A Faculty Guide for Teaching and Learning, 45-60. Routledge. DOI: https://doi.org/10.4324/9781003260776

Moore E., Howson, P., Grainger M. [and other]. (2022). The role of participatory scenarios in ecological restoration: a systematic map protocol. Environmental Evidence, 11, 23 (2022). DOI: https://doi.org/10.1186/s13750-022-00276-w

Morar, C., Lukić, T., Valjarević, A. [and other]. (2022). Spatiotemporal analysis of urban green areas using change detection: A case study of Kharkiv, Ukraine. Frontiers in Environmental Science, 10, 823129. https://doi.org/10.3389/fenvs.2022.823129

Mueller H., Groeger A., Hersh A. [and other]. (2021) Monitoring war destruction from space using machine learning, Proc. Natl. Acad. Sci. U.S.A. 118 (23) e2025400118. DOI: https://doi.org/10.1073/pnas.2025400118

Narkhede J. Comparative Evaluation of Post-Hoc Explainability Methods in AI: LIME, SHAP, and Grad-CAM," 2024 4th International Conference on Sustainable Expert Systems (ICSES), Kaski, Nepal, 2024, 826-830, DOI: https://doi.org/10.1109/ICSES63445.2024.10762963

Penca J., Tănăsescu, M. (2024). The transformative potential of the EU’s Nature Restoration Law. Sustainability Science. Advance online publication. DOI: https://doi.org/10.1007/s11625-024-01610-6

Perissi I. (2025). Assessing the EU27 potential to meet the Nature Restoration Law targets. Environmental Management, 75(4), 711–729. https://doi.org/10.1007/s00267-024-02107-9

Radke, R. J., Andra, S., Al-Kofahi, O., & Roysam, B. (2005). Image change detection algorithms: A systematic survey. IEEE Transactions on Image Processing, 14(3), 294–307. DOI: https://doi.org/10.1109/TIP.2004.838698

Rambaldi G. (2010). Participatory Three-Dimensional Modelling: Guiding Principles and Applications. Technical Centre for Agricultural and Rural Cooperation (CTA). Available at: https://participatorygis.blogspot.com/2010/10/our-forest-our-dignity-forest-dependent.html

Sampath A., Shan J. (2010). Building reconstruction from airborne LiDAR point clouds. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3, 163–168. DOI: http://dx.doi.org/10.1109/TGRS.2009.2030180

Selvaraju R. R., Cogswell M., Das A., Vedantam R., Parikh D., Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 618–626. DOI: https://doi.org/10.1109/ICCV.2017.74

Shafian S., He C., Hu D. (2025). DamageScope: An Integrated Pipeline for Building Damage Segmentation, Geospatial Mapping, and Interactive Web-Based Visualization. Remote Sensing, 17(13), 2267. DOI: https://doi.org/10.3390/rs17132267

Stephens D. W. (2020). Trauma Informed Pedagogy for the Religious and Theological Higher Education Classroom. Religions, 11(9), 449. DOI: https://doi.org/10.3390/rel11090449

Stilla U., Xu Y. (2023). Change detection of urban objects using 3D point clouds: A review. ISPRS J. Photogram. Remote Sens. 197, 228-255. https://doi.org/10.1016/j.isprsjprs.2023.01.010.

Stoter J., van den Brink L., Ledoux H. (2016). 3D cadaster implementations and challenges. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-4, 1–8. DOI: https://doi.org/10.5194/isprs-annals-III-4-1-2016

Tadono T., Ishida H., Oda F., Naito S., Minakawa K., Iwamoto H. (2014). Precise Global DEM Generation by ALOS PRISM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-4, 71–76. DOI: https://doi.org/10.5194/isprsannals-II-4-71-2014

Tian S., Zhong Y., Zheng Z. [and other] (2022). Large-scale deep learning based binary and semantic change detection in ultra high resolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 193, 164–186. https://doi.org/10.1016/j.isprsjprs.2022.08.012

Toomey, A., Smith, J., Becker, C., Palta, M., & Moore, T. (2023). Towards a pedagogy of social–ecological collaborations: Engaging students and urban nonprofits for an ecology with cities. Urban Ecosystems, 26, 425–432. DOI: https://doi.org/10.1007/s11252-023-01343-x

UNECE. UN4UkrainianCities. Supporting Kharkiv's Path to Recovery with the Comprehensive Restoration Program. UN Report (2024). Available at: https://www.un4ukrainiancities.org/news/supporting-kharkivs-path-to-recovery-with-the-comprehensive-restoration-program-1

Vance-Chalcraft H. D., Hurlbert A. H., Styrsky J. N. [and other] (2022). Ecological service-learning positively impacts classroom climate and empowers undergraduates for environmental action. Ecosphere, 13(5), e4039. DOI: https://doi.org/10.1002/ecs2.4039

Wang X., Zhang L., Li H. (2020). A deep Siamese network with hybrid convolutional feature extraction module for change detection in multi-sensor remote sensing images. Remote Sensing, 12(2), 205. DOI: https://doi.org/10.3390/rs12020205

Webster S., Thompson P., Carello J. (2022). Trauma-informed pedagogies: A guide for responding to crisis and inequality in higher education. Textbook. Springer. DOI: https://doi.org/10.1007/978-3-030-92705-9

Wiley D. R., Abernathy D. R. (2023). The next layer: Towards open pedagogy in geospatial education. Transactions in GIS, 27(2), e13081. DOI: https://doi.org/10.1111/tgis.13081

Yu D., Fang, C. (2023). Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sensing, 15(5), 1307. DOI: https://doi.org/10.3390/rs15051307

Zhou Y., Rupnik E., Meynard C., Thom, C., Pierrot-Deseilligny M. (2020). Simulation and Analysis of Photogrammetric UAV Image Blocks–Influence of Camera Calibration Error. Remote Sensing, 12(1), 22. DOI: https://doi.org/10.3390/rs12010022

Zhu Z., Woodcock C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152–171. DOI: https://doi.org/10.1016/j.rse.2014.01.011

Published
2025-12-01
Cited
How to Cite
Kostrikov, S., & Niemets, L. (2025). Restoration as recovery: participatory urbogeosystemic pedagogy of Karazin University for the Erasmus+ project FutureLand. Visnyk of V. N. Karazin Kharkiv National University. Series Geology. Geography. Ecology, (63), 234-255. https://doi.org/10.26565/2410-7360-2025-63-18

Most read articles by the same author(s)

1 2 > >>