Calculation of the Total Current Generated in a Tunnel Diode Under the Action of Microwave and Magnetic Fields

  • Gafur Gulyamov Namangan Engineering Construction Institute, Namangan, Uzbekistan https://orcid.org/0000-0001-9879-3165
  • Sharifa B. Utamuradova Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0002-1718-1122
  • Mukhamadjon G. Dadamirzaev Namangan Engineering Construction Institute, Namangan, Uzbekistan https://orcid.org/0000-0001-8258-4617
  • Nozimjon A. Turgunov Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0003-3481-5622
  • Munira K. Uktamova Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan, Tashkent, Uzbekistan
  • Kakhramon M. Fayzullaev Institute of Semiconductor Physics and Microelectronics at the National University of Uzbekistan, Tashkent, Uzbekistan https://orcid.org/0000-0001-7362-1439
  • Arofat I. Khudayberdiyeva Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
  • Alisher I. Tursunov Termiz State University, Termiz, Uzbekistan
Keywords: Chynowet model, Tsu-Esaki model, microwave field, magnetic field, barrier transparency coefficient, excess current

Abstract

In this paper, a formula was derived for calculating the total current generated in a tunnel diode under the action of a microwave field and a magnetic field. In addition, the dependence of the total current of the tunnel diode on the total power induced by the microwave field is theoretically presented and compared with experimental data. For the total current in the tunnel diode, without taking into account the excess current, volt-ampere characteristics was obtained for cases with and without the influence of a microwave field.

Downloads

Download data is not yet available.

References

K.P. Abdurakhmanov, Sh.B. Utamuradova, Kh.S. Daliev, S.G. Tadjy-Aglaeva, and R.M. Ergashev, Semiconductors, 32(6), 606 (1998). https://doi.org/10.1134/1.1187448

Sh.B. Utamuradova, A.V. Stanchik, D.A. Rakhmanov, A.S.Doroshkevich, and K.M.Fayzullaev, New Materials, Compounds and Applications, 6(3), 214 (2022). http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/V6N3/Utamuradova_et_al.pdf

Sh.B. Utamuradova, Kh.S. Daliev, Sh.Kh. Daliev, and K.M. Fayzullaev, Applied Physics, 6, 90 (2019). https://applphys.orion-ir.ru/appl-19/19-6/PF-19-6-90.pdf

S.A.Muzafarova, Sh.B.Utamuradova, A.М.Abdugafurov, K.M.Fayzullaev, E.M.Naurzalieva and D.A. Rakhmanov, Applied Physics, 4, 81 (2021). https://applphys.orion-ir.ru/appl-21/21-4/PF-21-4-81.pdf

Sh.B.Utamuradova, A.V.Stanchik, K.M.Fayzullaev, B.A.Bakirov, Applied Physics, 2, 33 (2022). https://applphys.orion-ir.ru/appl-22/22-2/PF-22-2-33_EN.pdf

P.R. Berger, Comprehensive Semiconductor Science and Technology, 176 (2011). https://doi.org/10.1016/B978-0-44-453153-7.00013-4

E.O. Kane, Journal of Applied Physics, 32, 83 (1961). https://doi.org/10.1063/1.1735965

J.S. Karlovsky, Phys. Rev. 127, 419 (1962). https://doi.org/10.1103/PhysRev.127.419

I. Shalish, Journal of applied physics, 124, 075102 (2018). https://aip.scitation.org/doi/10.1063/1.5038800

N. Moulin, A. Mohamed, F. Mandorlo, and M. Lemiti, Journal of Applied Physics, American Institute of Physics, 126(3), 033105 (2019). http://dx.doi.org/10.1063/1.5104314

N.A. Turgunov, E.H. Berkinov, and D.X. Mamazhonova, Applied Physics, 3, 40 (2020). https://applphys.orion-ir.ru/appl-20/20-3/PF-20-3-40.pdf

N.A. Turgunov, Inorganic Materials, 12(54), 1183 (2018). https://link.springer.com/article/10.1134/S0020168518120178

N.A. Turgunov, D.Kh. Mamajonova, and E.Kh. Berkinov, Journal of nano- and electronic physics. 5(13), 05006 (2021). https://jnep.sumdu.edu.ua/download/numbers/2021/5/articles/jnep_13_5_05006.pdf

S.V. Syrotyuk, East. Eur. J. Phys. 4, 31 (2021), https://doi.org/10.26565/2312-4334-2021-4-03

S.M. Sze, and K.K. Ng, Physics of Semiconductor Devices, (John Wiley & Sons, Inc., Hoboken, New Jersey, (2007). 3, 418 https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470068328.fmatter

T.A. Growden, Zh. Weidong, E.R. Brown, D.F. Storm, K. Hansen, P. Fakhimi, D.J. Meyer, and P.R. Berger, Applied physics letters, 112, 033508 (2018). https://doi.org/10.1063/1.5010794

G. Gulyamov, М.G. Dadamirzaev, and М.K. Uktamova, Guangdianzi Jiguang/Journal of Optoelectronics Laser. 9(41), 419 (2022). http://gdzjg.org/index.php/JOL/article/view/1144

A.G. Chynoweth, W.L. Feldman, and R.A. Logan, Phys. Rev. 121, 684 (1961). https://doi.org/10.1103/PhysRev.121.684

М.K. Uktamova, and Sh. Nazarov, Web of scientist: International scientific research journal, 10(3), 800 (2022). https://wos.academiascience.org/index.php/wos/article/view/2601/2475

G. Gulyamov, М.G. Dadamirzaev, М.K. Uktamova, and B.Z. Mislidinov, AIP Conference Proceedings, 2700, 050007(2023). https://aip.scitation.org/doi/abs/10.1063/5.0126516

I.K. Kamilov, K.M. Aliev, Kh.O. Ibragimov, and N.S. Abakarova, J. Phys. Condens. Matter. 148, 171 (2008). https://doi.org/10.1016/j.ssc.2008.06.017

G. Gulyamov, U.I. Erkaboev, and N.Yu. Sharibaev, Semiconductors, 48, 1287 (2014). http://dx.doi.org/10.4236/ojapps.2015.512073

G. Gulyamov, G. Majidova, and F. Muxitdinova, AIP Conference Proceedings. 2700, 050008 (2023). https://doi.org/10.1063/5.0126385

G. Gulyamov, M.G. Dadamirzayev and M.O. Qosimova, AIP Conference Proceedings, 2700, 050013 (2023). https://doi.org/10.1063/5.0124926

Published
2023-06-02
Cited
How to Cite
Gulyamov, G., Utamuradova, S. B., Dadamirzaev, M. G., Turgunov, N. A., Uktamova, M. K., Fayzullaev, K. M., Khudayberdiyeva, A. I., & Tursunov, A. I. (2023). Calculation of the Total Current Generated in a Tunnel Diode Under the Action of Microwave and Magnetic Fields. East European Journal of Physics, (2), 221-227. https://doi.org/10.26565/2312-4334-2023-2-24

Most read articles by the same author(s)