Research of the Impact of Silicon Doping with Holmium on its Structure and Properties Using Raman Scattering Spectroscopy Methods
Abstract
Each crystal structure has its own phonon modes, which appear in the Raman spectrum of Raman scattering. In the case of silicon, phonon modes associated with the diamond structure of silicon can be detected. In a Raman spectrum, the position of the lines, their intensity, and the width of the lines are usually measured. Raman spectroscopy is a powerful tool for studying crystalline materials at the molecular level, and its application in the study of semiconductors and nanomaterials provides important information about their structure and properties. In this study, the spectra of two types of silicon were analyzed: n-Si and p-Si, as well as their doped analogues n-Si<Ho> and p-Si<Ho>. The obtained Raman imaging results demonstrated spatially varying nanocrystallinity and microcrystallinity of the samples. The n-Si<Ho> and p-Si<Ho> spectra indicate the appearance of a Raman band at 525 cm-1 with a shift of -5 cm-1 and +5 cm-1, respectively, relative to the position of the silicon substrate peak, indicating the presence of tensile strain in the materials. The absence of other impurity peaks indicates the high purity of the n-Si<Ho> and p-Si<Ho> samples. The holmium doped Si material exhibits additional peaks in the Raman spectra, which is attributed to the presence of vacancies and defects in the newly formed Si-Ho compositions. The results of the analysis of the spectra indicate the influence of doping silicon with holmium on its structure and properties, forming new bonds and defects.
Downloads
References
Sh.B. Utamuradova, Kh.J. Matchonov, J.J. Khamdamov, and Kh.Y. Utemuratova, “X-ray diffraction study of the phase state of silicon single crystals doped with manganese,” New Materials, Compounds and Applications, 7(2), 93-99 (2023). http://jomardpublishing.com/UploadFiles/Files/journals/NMCA/v7n2/Utamuradova_et_al.pdf
Y. Inoue, S. Nakashima, A. Mitsuishi, T. Nishimura, and Y. Akasaka, “The Depth Profiling of the Crystal Quality in Laser-Annealed Polycrystalline Si Films by Raman Microprobe,” Jpn. J. Appl. Phys. 25, 798–801 (1986). https://doi.org/10.1143/JJAP.25.798
Sh.B. Utamuradova, Sh.Kh. Daliev, D.A. Rakhmanov, S.F. Samadov, and A.S. Doroshkevich, “Investigation of radiation defect formation of irradiated n-Si,” Advanced Physical Research, 5(3), 183-191 (2023). http://jomardpublishing.com/UploadFiles/Files/journals/APR/V5N3/7.Utamuradova.pdf
Sh.B. Utamuradova, Sh.Kh.Daliev, A.V. Stanchik, D.A. Rakhmanov, “Raman spectroscopy of silicon, doped with platinum and irradiated by protons”, E3S Web of Conferences, 402, 14014(2023). https://doi.org/10.1051/e3sconf/202340214014
Z.T. Azamatov, Sh.B.Utamuradova, M.A. Yuldoshev, N.N. Bazarbayev, “Some properties of semiconductor-ferroelectric structures”, East European Journal of Physics, 2, 187–190(2023). https://doi.org/10.26565/2312-4334-2023-2-19
Daliev, Kh.S., Utamuradova, Sh.B., Khamdamov, J.J. & Bahronkulov, Z.E. (2024). Electrophysical properties of silicon doped with lutetium. Advanced Physical Research, 6(1), 42-49 https://doi.org/10.62476/apr61.49
V. A. Volodin, M. D. Efremov, and V. A. Gritsenko, “Raman Spectroscopy Investigation of Silicon Nanocrystals Formation in Silicon Nitride Films,” Solid State Phenom. 57-58, 501–506 (1997). https://doi.org/10.4028/www.scientific.net/SSP.57-58.501
Sh.B.Utamuradova, Z.T. Azamatov, M.A. Yuldoshev, “Optical Properties of ZnO–LiNbO3 and ZnO–LiNbO3:Fe Structures”, Russian Microelectronics, 52, 99–103(2023). https://doi.org/10.1134/S106373972360022X
H. Xia, Y.L. He, L.C. Wang, W. Zhang, X.N. Liu, X.K. Zhang, D. Feng, and H.E. Jackson, “Phonon mode study of Si nanocrystals using micro‐Raman spectroscopy,” J. Appl. Phys. 78, 6705–6708 (1995). https://doi.org/10.1063/1.360494
Z. Iqbal, and S. Veprek, “Raman scattering from hydrogenated microcrystalline and amorphous silicon,” J. Phys. C, 15, 377 (1982). https://doi.org/10.1088/0022-3719/15/2/019
J. Gonzales-Hernandez, G.H. Azarbayejani, R. Tsu, and F.H. Pollak, “Raman, transmission electron microscopy, and conductivity measurements in molecular beam deposited microcrystalline Si and Ge: A comparative study,” Appl. Phys. Lett. 47, 1350 (1985). https://doi.org/10.1063/1.96277
I.H. Campbell, and P.M. Fauchet, “The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors,” Solid State Commun. 52, 739 (1986). https://doi.org/10.1016/0038-1098(86)90513-2
J.E. Smith, Jr., M.H. Brodsky, B.L. Crowder, M.I. Nathan, and A. Pinczuk, “Raman Spectra of Amorphous Si and Related Tetrahedrally Bonded Semiconductors,” Phys. Rev. Lett. 26, 642 (1971). https://doi.org/10.1103/PhysRevLett.26.642
Kh.S. Daliev, Sh.B. Utamuradova, Z.E. Bahronkulov, A.Kh. Khaitbaev, and J.J. Hamdamov, “Structure Determination and Defect Analysis n-Si, p-Si Raman Spectrometer Methods,” East Eur. J. Phys. 4, 193 (2023). https://doi.org/10.26565/2312-4334-2023-4-23
P.A. Temple, and C.E. Hathaway, “Multiphonon Raman spectrum of silicon,” Physical Review B, 7(8), 3685–3697 (1973). https://doi.org/10.1103/PhysRevB.7.3685
Sh.B. Utamuradova, Sh.Kh. Daliev, E.M. Naurzalieva, X.Yu. Utemuratova, “Investigation of defect formation in silicon doped with silver and gadolinium impurities by raman scattering spectroscopy”, East European Journal of Physics, 3, 430–433(2023). https://doi.org/ 10.26565/2312-4334-2023-3-47
K.J. Kingma, and R.J. Hemley, “Raman spectroscopic study of microcrystalline silica,” American Mineralogist, 79(3-4), 269 273 (1994). https://pubs.geoscienceworld.org/msa/ammin/article-pdf/79/3-4/269/4209223/am79_269.pdf
G.E. Walrafen, Y.C. Chu, and M.S. Hokmabadi, “Raman spectroscopic investigation of irreversibly compacted vitreous silica,” The Journal of Chemical Physics, 92(12), 6987–7002 (1990). https://doi.org/10.1063/1.458239
B. Champagnon, C. Martinet, M. Boudeulle, D. Vouagner, C. Coussa, T. Deschamps, and L. Grosvalet, “High pressure elastic and plastic deformations of silica: in situ diamond anvil cell Raman experiments,” Journal of Non-Crystalline Solids, 354(2-9), 569–573 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.07.079
Copyright (c) 2024 Sharifa B. Utamuradova, Shakhrukh Kh. Daliev, Alisher Kh. Khaitbaev, Jonibek J. Khamdamov, Khusniddin J. Matchonov, Xushnida Y. Utemuratova
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).