Метод гіперсингулярних інтегральних рівнянь в задачі визначення частот та форм коливань круглої пластинки, зануреної в рідину
Анотація
Для дослідження частот та форм коливань круглої пластинки, що занурена в рідину, розроблено новий підхід, заснований на застосуванні гіперсингулярних інтегральних рівнянь та методу заданих форм. Припускається, що кругла тонка пружна пластина занурена в ідеальну нестисливу рідину, рух якої вважається безвихровим. В цих умовах існує потенціал швидкостей, що задовольняє рівнянню Лапласа всюди за межами пластини, а на поверхні пластини виконується умова непротікання. Тиск рідини визначено з лінеаризованого інтегралу Коші-Лагранжа. При розв’язанні крайової задачі щодо потенціалу швидкостей використано інтегральне зображення у вигляді потенціалу подвійного шару, при цьому густина потенціалу пропорційна перепаду тиску рідини. Використання методу заданих форм дозволило звести задачу визначення приєднаних мас рідини до розв’язання гіперсингулярних рівнянь на круговій області. Здійснено зведення двовимірних гіперсингулярних інтегральних рівнянь до одновимірних. Внутрішні інтеграли при цьому набувають форму еліптичних інтегралів другого роду, що не мають особливостей. Для обчислення зовнішнього інтегралу, який існує лише в сенсі Адамара, запропоновано використати метод граничних елементів. Розроблено процедуру обчислення елементів матриці системи лінійних алгебраїчних рівнянь для знаходження невідомої густині потенціалу подвійного шару. Здійснено розв’язок гіперсингулярного рівняння та наведено порівняння числових та аналітичних розв’язків. Праві частини гіперсингулярних інтегральних рівнянь є формами коливань жорстко закріпленої круглої пластини, які отримані аналітичним шляхом. Розроблено методику обчислення матриці приєднаних мас, що дозволило звести задачу, що розглядається, до розв’язання проблеми власних значень.
Завантаження
Посилання
/Посилання
Ibrahim R. A., Liquid sloshing dynamics: theory and applications. Cambridge University Press, 2005. URL:
Gavrilyuk, I., M. Hermann, Lukovsky I., Solodun O., Timokha, A. Natural Sloshing frequencies in Truncated Conical Tanks. Engineering Computations, vol. 25, no. 6, pp.518 – 540, 2008. URL:
Degtyarev, K., Glushich, P., Gnitko, V., Strelnikova, E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells. International Journal of Modern Physics and Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 10.13140/RG.2.1.1857.5209 URL:
Eseleva E.V., Gnitko V.I., Strelnikova E.A. Natural vibrations of pressure vessels when interacting with liquid. Problems of Mechanical Engineering, vol. 9, no 1, pp.105 – 118, 2006. http://journals.uran.ua/jme/issue/archive [in Ukrainian]
T. Medvedovskaya, E. Strelnikova, K. Medvedyeva Free Hydroelastic Vibrations of Hydroturbine Head. Intern. J. Eng. and Advanced Research Technology (IJEART), vol. 1, no 1. pp.45 – 50, 2015. DOI 10.13140/RG.2.1.3527.4961 URL: https://www.researchgate.net/publication/282868308_Free_Hydroelastic_Vibrations_of_Hydroturbine_Head
Misyura S., Smetankina N., Misyura U. Rational modeling of a hydroturbine cover for strength analysis. Bulletin of Kharkiv Polytechnic Institute, Dynamics and strength of machines, no. 1, pp.34 – 39, 2019. URL: http://repository.kpi.kharkov.ua/handle/KhPI-Press/44370 [in Ukrainian]
Ganchin E.V., Rzhevskaya I.E., Strelnikova E.A. Investigation of the dynamic characteristics of impeller blades of Kaplan hydraulic turbines when interacting with a liquid. Bulletin of Kharkiv National University, no. 847, pp.79-86, 2009. URL: http://mia.univer.kharkov.ua/11/30078.pdf [in Russian]
Babachenko Yu. Avdyushenko A. Computational study of radial forces acting on the rotor of a radially axial hydraulic turbine. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, vol. 4, no. 2, pp.547 – 552, 2013. URL: https://cyberleninka.ru/article/n/raschetnoe-issledovanie-radialnyh-sil-deystvuyuschih-na-rotor-radialno-osevoy-gidroturbiny [in Russian]
Degtyarev K. Strelnikova E. Sheludko G. Computer modeling of wind turbine blades with optimal parameters. Bulletin of V.N. Karazin Kharkiv National University. Series: Mathematical modeling. Information Technology. Automated control systems, no. 19, pp.81 – 86, 2012. URL: http://mia.univer.kharkov.ua/19/30251.pdf [in Russian]
Hozyainov B. Kostin I. Testing of wind and hydro turbine blades with vertical axis of rotation. Bulletin of Samara State Aerospace University, vol. 4, no. 24, pp.120 – 124, 2010. URL: https://cyberleninka.ru/article/n/ispytanie-lopastey-vetro-i-gidroturbin-s-vertikalnoy-osyu-vrascheniya [in Russian]
Ishmuratov F.Z., Kuznetsov A.G., Mosunov V.A. Application of the Ritz polynomial method for calculating the characteristics of dynamic aeroelasticity taking into account gyroscopic forces. Uchenye zapiski CAGI, vol. 48, no. 6, pp.64 – 74, 2017. URL: http://www.tsagi.ru/institute/publications/memoirs/archive_annotations/ [in Russian]
Amosov A.A., Dubinsky Yu.A., Kopchenova N.V. Computational methods for engineers. Training manual. – M.:Vysshaja shkola, pp.487 – 506, 1994. URL: https://e.lanbook.com/book/42190 [in Russian]
Segerlind L. Applied finite element method - M .: Mir- 392 p., 1979. URL: https://studizba.com/files/show/djvu/1936-1-segerlind-l--primenenie-metoda.html [in Russian]
Brebbia, C.A, Telles, J.C.F & Wrobel, L.C., Boundary element techniques: theory and applications in engineering. Springer-Verlag: Berlin and New York, 1984. URL: https://studizba.com/files/show/djvu/1932-1-brebbiya-k-telles-zh-vroubel-l--metody.html
Rvachev V. L. Theory of R-functions and some of its applications. Kiev: Nauk. dumka, 552 p.,
URL: https://www.twirpx.com/file/2178304/
Timoshenko S., Woinowsky-Krieger S., Theory of plates and shells. New York: McGraw-Hill, 1959. 594 с. URL: https://www.cap-recifal.com/ccs_files/articles/cuveaqua1_denisio/Timoshenko_-_Theory_of_plates_and_shells.pdf
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering Vol.3, No.1, 2018, pp.15-52.
URL: http://jomardpublishing.com/UploadFiles/Files/journals/JTME/V3No1/StrelnikovaE.pdf
Gunther N.M. Potential theory and its application to the main problems of mathematical physics. –M .: Gostekhteorizdat, 1953. - 416 p. URL:
http://publ.lib.ru/ARCHIVES/G/GYUNTER_Nikolay_Maksimovich/_Gyunter_N.M..html#0003
Strelnikova E.A., Hypersingular integral equations in two-dimensional boundary value problems for the Laplace equation and the Lame equations, Dopovidi NAN Ukraini. no. 3, pp.27-31, 2001. URL: https://www.dopovidi-nanu.org.ua/uk/archive
Gandel Yu.V. Introduction to methods for calculating singular and hypersingular integrals. - Kharkov: Ed. Kharkiv national university, 92 p., 2010. URL: http://ekhnuir.univer.kharkov.ua/handle/123456789/247
Hadamard J. The Cauchy problem for linear partial differential equations of hyperbolic type. –M: Nauka, 352 p., 1978. URL: https://www.twirpx.com/file/1394980/
Kantor B.Ya. Strelnikova E.A. Hypersingular integral equations in problems of continuum mechanics. Kharkov: Novoe Slovo, 252 p., 2005. URL: https://www.twirpx.com/file/1394980/
Gradshtein I.S., Ryzhik I.M. Tables of integrals, sums, series and products. Moscow: Fizmatgiz, 1100 pp., 1963. URL: http://mia.univer.kharkov.ua/11/30090.pdf
Karaiev A. Singular integrals in axisymmetric problems of elastostatics / A. Karaiev, E. Strelnikova //International Journal of Modeling, Simulation, and Scientific Computing, 2020, Vol. 11, № 1, 2050003 . DOI: 10.1142/S1793962320500038.
URL: http://www.vixri.com/d/Gradshtejn,%20Ryzhikov_Tablicy%20Integralov.pdf
Kit G.S., Hai M.V. The method of potentials in three-dimensional problems of thermoelasticity for bodies with cracks. Kiev: Nauk. dumka, 288 p., 1989. URL: https://www.e-varamu.ee/item/HMM7WKKBPAMHRIRDJ7BUXPYNW4X3S625
Ibrahim R. A., Liquid sloshing dynamics: theory and applications. Cambridge University Press, 2005. https://www.researchgate.net/publication/259815818_Liquid_Sloshing_Dynamics_Theory_and_Applications_by_Raouf_A_Ibrahim
Gavrilyuk, I., M. Hermann, Lukovsky I., Solodun O., Timokha, A. Natural Sloshing frequencies in Truncated Conical Tanks. Engineering Computations, Vol. 25 Iss: 6, pp.518 – 540, 2008 https://www.researchgate.net/publication/245338809_Natural_sloshing_frequencies_in_rigid_truncated_conical_tanks
Degtyarev, K., Glushich, P., Gnitko, V., Strelnikova, E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells. International Journal of Modern Physics and Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 10.13140/RG.2.1.1857.5209 https://www.researchgate.net/publication/280728146_Numerical_Simulation_of_Free_Liquid-Induced_Vibrations_in_Elastic_Shells
Еселева Е.В. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Е.В. Еселева, В.И. Гнитько, Е.А. Стрельникова. Пробл. машиностроения. 2006. Т. 9. №1, С.105– 118. http://journals.uran.ua/jme/issue/archive
Medvedovskaya T. Free Hydroelastic Vibrations of Hydroturbine Head Covers / T. Medvedovskaya, E. Strelnikova, K. Medvedyeva // Intern. J. Eng. and Advanced Research Technology (IJEART). – 2015. – Vol. 1, No 1. – P. 45 - 50. – DOI 10.13140/RG.2.1.3527.4961 https://www.researchgate.net/publication/282868308_Free_Hydroelastic_Vibrations_of_Hydroturbine_Head
Місюра C. Ю., Сметанкіна Н. В., Місюра Є. Ю. Раціональне моделювання кришки гідротурбіни для аналізу міцності. Вісн. Нац. техн. ун-ту «ХПІ». Сер. Динаміка і міцність машин. 2019. № 1. С. 34–39. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44370
Ганчин Е.В., Ржевская И.Е., Стрельникова Е.А. Исследование динамических характеристик лопастей рабочих колес поворотно-лопастных гидротурбин при взаимодействии с жидкостью. Вісник Харківського національного університету, 2009. № 847. С. 79-86. http://mia.univer.kharkov.ua/11/30078.pdf
Бабаченко Ю.В. Расчетное исследование радиальных сил, действующих на ротор радиально осевой гидротурбины / Бабаченко Ю.В., Авдюшенко А.Ю. Известия Самарского научного центра Российской академии наук, 2013. Т.4. №2, С. 547-552. https://cyberleninka.ru/article/n/raschetnoe-issledovanie-radialnyh-sil-deystvuyuschih-na-rotor-radialno-osevoy-gidroturbiny
Дегтярев К.Г., Стрельникова Е. А., Шелудько Г. А. Компьютерное моделирование лопастей ветроустановок с оптимальными параметрами. Вісник Харківського національного університету імені В.Н. Каразіна. Серія: Математичне моделювання. Інформаційні технології. Автоматизовані системи управління, No 19, 2012, С.81–86 http://mia.univer.kharkov.ua/19/30251.pdf
Хозяинов Б.П. Испытание лопастей ветро - и гидротурбин с вертикальной осью вращения. Хозяинов Б.П., Костин И.Г. Вестник Самарского государственного аэрокосмического университета им. академика С.П. Королёва, 2010. Т.4. №24, С. 120-124. https://cyberleninka.ru/article/n/ispytanie-lopastey-vetro-i-gidroturbin-s-vertikalnoy-osyu-vrascheniya
Ишмуратов Ф.З. Применение полиномиального метода Ритца для расчета характеристик динамической аэроупругости с учетом гироскопических сил / Ишмуратов Ф.З., Кузнецов А.Г., Мосунов В.А. // Ученые записки ЦАГИ, 2017. Т.48. – №6, – С. 64-74. http://www.tsagi.ru/institute/publications/memoirs/archive_annotations/
Амосов А.А. Вычислительные методы для инженеров / Амосов А.А., Дубинский Ю.А., Копченова Н.В. // Учеб. пособие. – М.: Высш. шк., 1994. – С. 487-506. https://e.lanbook.com/book/42190
Сегерлинд Л. Применение метода конечных элементов – М.: Мир, 1979. – 392 С.
https://studizba.com/files/show/djvu/1936-1-segerlind-l--primenenie-metoda.html
Brebbia, C.A, Telles, J.C.F & Wrobel, L.C., Boundary element techniques: theory and applications in engineering. Springer-Verlag: Berlin and New York, 1984.
https://studizba.com/files/show/djvu/1932-1-brebbiya-k-telles-zh-vroubel-l--metody.html
Рвачёв В. Л. Теория R-функций и некоторые её приложения. Киев: Наук. думка 1982. 552 С. https://www.twirpx.com/file/2178304/
Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-Hill, 1959. 594 с. https://www.cap-recifal.com/ccs_files/articles/cuveaqua1_denisio/Timoshenko_-_Theory_of_plates_and_shells.pdf
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering Vol.3, No.1, 2018, pp.15-52
http://jomardpublishing.com/UploadFiles/Files/journals/JTME/V3No1/StrelnikovaE.pdf
Гюнтер Н.М. Теория потенциала и ее применение к основным задачам математической физики. М.: Гостехтеориздат, 1953. 416 с. http://publ.lib.ru/ARCHIVES/G/GYUNTER_Nikolay_Maksimovich/_Gyunter_N.M..html#0003
Стрельникова Е. А. Гиперсингулярные интегральные уравнения в двумерных краевых задачах для уравнения Лапласа и уравнений Ламе // Доп. НАН України. 2001. №3. С. 27-31. https://www.dopovidi-nanu.org.ua/uk/archive
Гандель Ю.В. Введение в методы вычисления сингулярных и гиперсингулярных интегралов. Харьков: Изд. Харьк. национального ун-та им. В.Н. Каразина, 2000. 92 с.http://ekhnuir.univer.kharkov.ua/handle/123456789/247
Адамар Ж. Задача Коши для линейных уравнений с частными производными гиперболического типа. М: Наука, 1978. 352 с. https://www.twirpx.com/file/1394980/
Кантор Б.Я. Гиперсингулярные интегральные уравнения в задачах механики сплошной среды. Б.Я. Кантор, Е.А. Стрельникова. Харьков: Новое слово, 2005. 252 с. http://mia.univer.kharkov.ua/11/30090.pdf
Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1963. 1100 с. http://www.vixri.com/d/Gradshtejn,%20Ryzhikov_Tablicy%20Integralov.pdf
Karaiev A. Singular integrals in axisymmetric problems of elastostatics / A. Karaiev, E. Strelnikova // International Journal of Modeling, Simulation, and Scientific Computing. 2020. Vol. 11, № 1, 2050003 . DOI: 10.1142/S1793962320500038
https://www.worldscientific.com/doi/10.1142/S1793962320500038
Кит Г.С., Хай М.В. Метод потенциалов в трехмерных задачах термоупругости для тел с трещинами. Киев: Наук. думка, 1989. 288 с.
https://www.e-varamu.ee/item/HMM7WKKBPAMHRIRDJ7BUXPYNW4X3S625