Система моніторингу стану серцево-судинної системи людини на основі найбільш повної математичної моделі судинного русла
Анотація
У статті наведена структура нової системи моніторингу стану серцево-судинної системи людини на основі геометричної і біомеханічної моделей судинного русла як розгалуженого дерева артерій. Геометрія дерева отримана шляхом усереднення даних вимірювань postmortem на п'яти тілах, статистичному аналізі закономірностей будови судинних дерев, новою методикою генерації індивідуального дерева конкретного пацієнта шляхом виконання декількох вимірювань in vivo. Для проведення чисельних розрахунків використовувалася модель, яка базується на рівняннях Нав'є-Стокса для вісесиметричних течій в'язкої нестисливої рідини і системи рівнянь класичної теорії в'язкопружньої товстостінної трубки для реологічної моделі Кельвіна-Фойхта для матеріалу стінки судин, з урахуванням умови безперервності тиску і витрати рідини на біфуркаціях трубок, при чому на відкритих кінцях трубок моделі задавалися термінальні провідності мікроциркуляторних русел органів. Була проведена валідація математичної моделі на основі експериментальних даних і корекція значень реологічних параметрів моделей методом найменших квадратів. Розроблена біомеханічна модель дозволяє проводити чисельні розрахунки тисків і швидкостей кровотоку в кожної артерії, зберігати інформацію в базі даних, аналізувати розподіл об’ємів крові та швидкостей кровотоку, розраховувати важливі діагностичні індекси, виявляти порушення і планувати хірургічні операції in silico.
Завантаження
Посилання
/Посилання
Yu K, et al. “Artificial intelligence in healthcare.” Nature Biomedical Engineering, vol. 2, pp. 719–731. 2018.
Lynch C.J. and C. Liston. “New machine-learning technologies for computer-aided diagnosis.” Nature Medicine, vol. 24, pp. 1304–1305, 2018.
LeCun Y, et al. “Deep learning” Nature, vol.52, pp. 436–444, 2015.
Imholz B.P., Wieling W., van Montfrans G.A., Wesseling K.H.” Fifteen years experience with finger arterial pressure monitoring: assessment of the technology.” Cardiovasc Res, vol.38, pp. 605-616, 1998.
Chung E., Chen G., Alexander B., Cannesson M. “Non-invasive continuous blood pressure monitoring: A review of current applications.” Front Med. vol.7, pp.91–101, 2013.
Milnor WR. “Hemodynamics.” Baltimore: Williams&Wilkins; 1989.
Kizilova N.N., Philippova E.N., Zenin O.K. “From the 55-tube Westerhof’s to Novel 1000-tube Model of the Human Systemic Arterial Tree: Blood Flow, Wave Propagation, Wave-Intensity Analysis and Medical Diagnostics.” Proc. of ESB Congress, Edinburg, P.953, 2010.
Westerhof N., Bosman F., de Vries C.J., Noordegraaf A. “Analog studies of the human systemic arterial tree.” Journal of Biomechanics, vol. 2,. pp.121−143, 1969.
Alastruey J., Parker K.H., Peiró J., Sherwin S.J. “Can the modified Allen's test always detect sufficient collateral flow in the hand?” A computational study, Computer Methods in Biomechanics and Biomedical Engineering. vol. 9, pp. 353–361, 2006.
Alastruey J., Parker K.H., Peiró J., et al. “Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows”. Journal of Biomechanics, vol. 40, рp. 1794-1805, 2007.
Zenin O.K., Kizilova N.N., Philippova E.N. “Studies on the Structure of Human Coronary Vasculature.” Biophysics, vol. 52, no. 5, pp.499–503, 2007.
Kizilova N., Solovyova H., Mizerski J. “Modeling of pulse wave propagation and reflection along human aorta”. Biomechanics in Medicine and Biology, K. Arkusz, R.Będziński, T. Klekiel, S. Piszczatowski (eds.), Springer Series “Advances in Intelligent Systems and Computing”, vol. 831, pp. 23−35, 2019.
Zenin O.K., Gusak V.K., Kiryakulov G.S. “Arterial system of human in numbers and formulas. Donetsk, 198 p, 2002. [in Russian]
Luzha D. Лужа Д. X-ray anatomy of the vascular system. Hungarian publishing house, 380 p, 1973. [in Russian]
Kizilova N., Philippova H., Zenin O. “A realistic model of human arterial system: blood flow distribution, pulse wave propagation and modeling of pathology. “ Mechanics in Medicine. Korzynskiego M., Cwanka J. (eds). Rzeszow, vol.10, pp.103-118, 2010.
Balabanov V.O., Kizilova N.M. “Mathematical modeling of hydraulic conductivity and wave propagation of arterial systems as binary trees.” Bulletin of the Taras Shevchenko National University. Physical and Mathematical Sciences Series. no.3, pp. 19–23, 2017. [in Ukrainian]
Balabanov V.A., Kizilova N.N. “Investigation of the spatial distribution of blood along the coronary artery tree: the influence of geometry and flow regime.” Coll. Proceedings of the XVIII International Symposium "Methods of Discrete Features in Mathematical Physics Problems" (MDOSMF-2017). Kharkiv, pp. 32–36, 2017. [in Russian]
Xiao N., Alastruey J., Alberto F.C. “A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models.” Int. J. Numer. Method. Biomed. Eng. v.30, no 2, pp. 204–31, 2014.
Yu K, et al. Artificial intelligence in healthcare. Nature Biomedical Engineering. 2018. Vol. 2. P. 719–731.
Lynch C.J. and C Liston. New machine-learning technologies for computer-aided diagnosis. Nature Medicine. 2018. vol.24. P. 1304–1305.
LeCun Y, et al. Deep learning. Nature. 2015. Vol. 521. P. 436–444.
Imholz B.P., Wieling W., van Montfrans G.A. Wesseling K.H. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res. 1998. vol. 38. P. 605-616.
Chung E., Chen G., Alexander B., Cannesson M. Non-invasive continuous blood pressure monitoring: A review of current applications. Front Med. 2013. vol. 7. P.91–101.
Milnor WR. Hemodynamics. Baltimore: Williams&Wilkins; 1989.
Kizilova N.N., Philippova E.N., Zenin O.K. From the 55-tube Westerhof’s to Novel 1000-tube Model of the Human Systemic Arterial Tree: Blood Flow, Wave Propagation, Wave-Intensity Analysis and Medical Diagnostics. Proc. of ESB Congress. Edinburg. 2010. P.953.
Westerhof N., Bosman F., de Vries C.J., Noordegraaf A. Analog studies of the human systemic arterial tree. Journal of Biomechanics. 1969. vol. 2. P. 121−143.
Alastruey J., Parker K.H., Peiró J., Sherwin S.J. Can the modified Allen's test always detect sufficient collateral flow in the hand? A computational study, computer methods in biomechanics and biomedical Engineering. 2006. vol. 9. P. 353–361.
Alastruey J., Parker K.H., Peiró J., et al. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. Journal of Biomechanics. 2007. vol.40. P.1794–1805.
Zenin O.K., Kizilova N.N., Philippova E.N. Studies on the Structure of Human Coronary Vasculature. Biophysics. 2007. vol. 52, N. 5. P.499–503.
Kizilova N., Solovyova H., Mizerski J. Modeling of pulse wave propagation and reflection along human aorta, Biomechanics in Medicine and Biology, K. Arkusz, R.Będziński, T. Klekiel, S. Piszczatowski (eds.), SpringerSeries “Advances in Intelligent Systems and Computing”. 2019. vol. 831. P. 23−35.
Зенин О.К., Гусак В.К., Кирьякулов Г.С. Артериальная система человека в цифрах и формулах. Донецк. 2002. 198с.
Лужа Д. Рентгеновская анатомия сосудистой системы. Издательство: АН Венгрии, 1973. 380 c.
Kizilova N., Philippova H., Zenin O. A realistic model of human arterial system: blood flow distribution, pulse wave propagation and modeling of pathology. Mechanics in Medicine. Korzynskiego M., Cwanka J. (eds). Rzeszow. 2010. Vol.10. P.103–118.
Балабанов В.О., Кізілова Н.М. Математичне моделювання стаціонарної та хвильової провідності артеріальних систем як бінарних дерев. Вісник КНУ імені Т.Г.Шевченко. Серія «Фізико-математичні науки». 2017. N3. C.19–23.
Балабанов В.А., Кизилова Н.Н. Исследование пространственного распределения крови по дереву коронарных артерий: влияние геометрии и режима течения. Зб. праць ХVIII Міжнародного симпозіуму «Методи дискретних особливостей в задачах математичної фізики» (МДОЗМФ-2017). Харків. 2017. С. 32–36.
Xiao N., Alastruey J., Alberto F.C. A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models. Int. J. Numer. Method. Biomed. Eng. 2014. vol.30, N2. P.204–31.