The memory and the evolution of populations

  • Владимир Михайлович Куклин
  • Алексей Викторович Приймак
  • Владимир Владимирович Яновский
Keywords: evolution, population, strategy, complexity, cooperation

Abstract

The population evolution with a complete set of behavioral strategies limited only by the depth of memory has been considered. Each successive generation of the population subsequently loses the most unfavorable behavior strategies of the previous generation. An increase in population memory has been shown to be evolutionarily beneficial. The evolutionary selection winners invariably belong to the agents with maximum memory. The concept of strategy complexity has been introduced. The strategies that win in natural selection have been shown to have a maximum or close to maximum complexity. The society aggressiveness in the process of evolution is decreasing.

Downloads

Download data is not yet available.

References

Weibull J. W. Evolutionary game theory. – MIT press, 1997.

Nowak M. A. Evolutionary dynamics. – Harvard University Press, 2006.

Claussen J. C. Discrete stochastic processes, replicator and Fokker-Planck equations of coevolutionary dynamics in finite and infinite populations //arXiv preprint arXiv:0803.2443. – 2008.

Traulsen A., Claussen J. C., Hauert C. Coevolutionary dynamics: from finite to infinite populations //Physical review letters. – 2005. – Т. 95. – №. 23. – С. 238701.

Nowak M. A., May R. M. The spatial dilemmas of evolution //International Journal of bifurcation and chaos. – 1993. – Т. 3. – №. 01. – С. 35-78.

Nowak M., Sigmund K. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game //Nature. – 1993. – Т. 364. – №. 6432. – С. 56-58.

Brandt H., Hauert C., Sigmund K. Punishment and reputation in spatial public goods games //Proceedings of the Royal Society of London B: Biological Sciences. – 2003. – Т. 270. – №. 1519. – С. 1099-1104.

Nowak M. A., May R. M. Evolutionary games and spatial chaos //Nature. – 1992. – Т. 359. – №. 6398. – С. 826-829.

Szabó G., Hauert C. Phase transitions and volunteering in spatial public goods games //Physical review letters. – 2002. – Т. 89. – №. 11. – С. 118101.

Perc M. Chaos promotes cooperation in the spatial prisoner's dilemma game //EPL (Europhysics Letters). – 2006. – Т. 75. – №. 6. – С. 841.

Perc M., Szolnoki A., Szabó G. Restricted connections among distinguished players support cooperation //Physical Review E. – 2008. – Т. 78. – №. 6. – С. 066101.

Baek S. K. et al. Intelligent tit-for-tat in the iterated prisoner’s dilemma game //Physical Review E. – 2008. – Т. 78. – №. 1. – С. 011125.

Szolnoki A., Perc M. Reward and cooperation in the spatial public goods game //EPL (Europhysics Letters). – 2010. – Т. 92. – №. 3. – С. 38003.

Szolnoki A., Perc M. Impact of critical mass on the evolution of cooperation in spatial public goods games //Physical Review E. – 2010. – Т. 81. – №. 5. – С. 057101.

Szolnoki A., Perc M. Group-size effects on the evolution of cooperation in the spatial public goods game //Physical Review E. – 2011. – Т. 84. – №. 4. – С. 047102.

Liu Y. et al. Aspiration-based learning promotes cooperation in spatial prisoner's dilemma games //EPL (Europhysics Letters). – 2011. – Т. 94. – №. 6. – С. 60002.

Szolnoki A., Perc M. Conditional strategies and the evolution of cooperation in spatial public goods games //Physical Review E. – 2012. – Т. 85. – №. 2. – С. 026104.

Szabó G., Fath G. Evolutionary games on graphs //Physics reports. – 2007. – Т. 446. – №. 4. – С. 97-216.

Ohtsuki H. et al. A simple rule for the evolution of cooperation on graphs and social networks //Nature. – 2006. – Т. 441. – №. 7092. – С. 502-505.

Santos F. C., Pacheco J. M. Scale-free networks provide a unifying framework for the emergence of cooperation //Physical Review Letters. – 2005. – Т. 95. – №. 9. – С. 098104.

Nowak M., Highfield R. Supercooperators: Altruism, evolution, and why we need each other to succeed. – Simon and Schuster, 2011.

Szabó G., Hauert C. Evolutionary prisoner’s dilemma games with voluntary participation //Physical Review E. – 2002. – Т. 66. – №. 6. – С. 062903.

Hauert C. et al. Via freedom to coercion: the emergence of costly punishment //science. – 2007. – Т. 316. – №. 5833. – С. 1905-1907.

Traulsen A., Claussen J. C. Similarity-based cooperation and spatial segregation //Physical Review E. – 2004. – Т. 70. – №. 4. – С. 046128.

Szolnoki A., Szabó G. Cooperation enhanced by inhomogeneous activity of teaching for evolutionary Prisoner's Dilemma games //EPL (Europhysics Letters). – 2007. – Т. 77. – №. 3. – С. 30004.

Perc M., Szolnoki A. Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game //Physical Review E. – 2008. – Т. 77. – №. 1. – С. 011904.

Yang H. X. et al. Diversity-optimized cooperation on complex networks //Physical Review E. – 2009. – Т. 79. – №. 5. – С. 056107.

Pacheco J. M., Traulsen A., Nowak M. A. Coevolution of strategy and structure in complex networks with dynamical linking //Physical review letters. – 2006. – Т. 97. – №. 25. – С. 258103.

Ohtsuki H., Nowak M. A., Pacheco J. M. Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs //Physical review letters. – 2007. – Т. 98. – №. 10. – С. 108106.

Meloni S. et al. Effects of mobility in a population of prisoner’s dilemma players //Physical Review E. – 2009. – Т. 79. – №. 6. – С. 067101.

Jiang L. L. et al. Role of adaptive migration in promoting cooperation in spatial games //Physical Review E. – 2010. – Т. 81. – №. 3. – С. 036108.

Fu F., Nowak M. A. Global migration can lead to stronger spatial selection than local migration //Jour. of stat. physics. – 2013. – Т. 151. – №. 3-4. – С. 637-653.

Fu F. et al. Evolution of in-group favoritism //Scientific reports. – 2012. – Т. 2. – С. 460.

Wang Z., Szolnoki A., Perc M. Optimal interdependence between networks for the evolution of cooperation //Scientific reports. – 2013. – Т. 3.

Lieberman E., Hauert C., Nowak M. A. Evolutionary dynamics on graphs //Nature. – 2005. – Т. 433. – №. 7023. – С. 312-316.

Hauert C., Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game //Nature. – 2004. – Т. 428. – №. 6983. – С. 643-646.

Axelrod R. The evolution of cooperation. – 1984.

Колмогоров А. Н. Три подхода к определению понятия" количество информации". – 2015.

Колмогоров А. Н. К логическим основам теории информации и теории вероятностей //Проблемы передачи информации. – 1969. – Т. 5. – №. 3. – С. 3-7.

Lloyd S. Measures of complexity: a nonexhaustive list //IEEE Control Systems Magazine. – 2001. – Т. 21. – №. 4. – С. 7-8.

Арнольд В. Экспериментальное наблюдение математических фактов. – Litres, 2017.

В.М.Куклин, А.В.Приймак, В.В.Яновский. Влияние памяти на эволюцию популяций, Вісник Харківського національного університету імені В. Н. Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління» т.29, с.41-66, 2016.
Published
2017-11-21
How to Cite
Куклин, В. М., Приймак, А. В., & Яновский, В. В. (2017). The memory and the evolution of populations. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 35(1), 38-60. Retrieved from https://periodicals.karazin.ua/mia/article/view/9841
Section
Статті