Analysis of discrete rheological models of bioactive soft and fluid materials

  • Н. Н. Кизилова
  • Е. Н. Соловьева
Keywords: active biomaterials, viscoelastic fluids, rheology, mathematical modeling

Abstract

Analysis of discrete rheological models of muscle tissues and implants as bioactive viscoelastic deformable materials is presented. The properties of the models under static, dynamic, isotonic and isometric loadings have been studied. The general form of creep and relaxation curves for 3-element and 5-element models has been obtained. The numerical calculations for stress and relaxation curves of the models have been obtained. A validation of the models based on the measurement data has been carried out. A generalization of the rheological models for the case of bioactive viscoelastic fluids has been proposed.

Downloads

Download data is not yet available.

References

Регирер С.А. Лекции по биологической механике, – М.: Изд-во МГУ, 1980. – 144с.

Філіппова О.М., Кізілова Н.М. Дослідження руху в’язкої рідини у в'язкопружній камері з біоактивного матеріалу. // Вісник Київського національного університету імені Тараса Шевченка. Серія: Фізико-математичні науки. – 2015. – Спецвипуск. – C.277–282.

Rezwana K., Chena Q.Z., Blakera J.J., Boccaccinia A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. // Biomaterials. – 2006. – 27(18). – P. 3413–3431.

Kumar K.V., Bois J.S., Jülicher F., Grill1 S.W. Pulsatory Patterns in Active Fluids. // Phys. Rev. Lett. – 2014. – v.112, 208101.

Marconi U.M.B., Maggi C. Towards a statistical mechanical theory of active fluids. // Soft Matter. – 2015. – v.11. – P.8768–8781.

Morozov A. From chaos to order in active fluids. Random flows in an active fluid become directional under confinement. // Science. – 2017. – 355(6331). – P. 1262–1263.

Heidenreich S., Dunkel J., Klapp H., Bär M. Hydrodynamic length-scale selection in microswimmer suspensions.// Physical Review E. – 2016. – v.94(2), 020601.

Alonso S., Strachauer U., Radszuweit M., Bär M., Hauser M. Oscillations and uniaxial mechanochemical waves in a model of an active poroelastic medium: Application to deformation patterns in protoplasmic droplets of Physarum polycephalum. // Physica D. – 2016. – v.318. – P.58–69.

Bressler B.H., Clinch N.F. The compliance of contracting skeletal muscle. // J. Physiol. – 1974. – v.237(3). – P. 477–493.

Joyce G.C., Rack P.M.H. Isotonic lengthening and shortening movements of cat soleus muscle. // J. Physiol. – 1969. – v.204(2). – P.475–491.

Bahler A.S., Fales J.T., Zierler K.L. The Dynamic Properties of Mammalian Skeletal Muscle. // J. Gen. Physiol. – 1968. – v.51 (3). – P. 369-384.
Published
2017-11-21
How to Cite
Кизилова, Н. Н., & Соловьева, Е. Н. (2017). Analysis of discrete rheological models of bioactive soft and fluid materials. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 35(1), 21-30. Retrieved from https://periodicals.karazin.ua/mia/article/view/9839
Section
Статті