Digital Twin Development for the Heat Transfer Process under Conceptual Uncertainty
Abstract
Relevance. Industrial development is characterized by the active introduction of cyber-physical systems, a key element of which is digital twins. Digital twins make it possible to improve the efficiency of technological process management, ensure the prediction of equipment operating modes, optimize energy consumption, and reduce operating costs. Water heaters are an important component of heat generation and consumption systems in industrial facilities, which necessitates the creation of adequate models capable of accurately reflecting real heat exchange processes. However, analytical models of such equipment often contain uncertain parameters, which reduces the accuracy of modeling and complicates their practical application without additional identification.
Purpose of the publication is to develop a water heater digital twin based on an analytical model adapted to real heat exchange conditions by identifying uncertain parameters. The analytical model is considered as a basic example that can be generalized for different types of heat exchange equipment.
Methods. The work uses analytical modeling of thermal processes and passive identification methods of mathematical model parameters. The dynamic model is adapted by minimizing the quadratic quality criterion, which characterizes the deviation of the state space variables of the mathematical model from the experimental data of the real heat transfer process. Numerical methods are used for passive identification.
Results. An analysis of the analytical mathematical model of a water heater was carried out and four uncertain parameters were identified that need to be refined to ensure the adequacy of the model. These parameters include material flows rates and heat transfer coefficients that determine the intensity of the heat flow through the heat exchange surface of the device. Based on numerical modeling, it is shown that the task of identifying uncertain coefficients is single-extreme in nature, which ensures the stability of optimization results and the possibility of applying standard numerical methods. The results of numerical modeling confirmed the effectiveness of the proposed approach to adapting the analytical model and developing a digital twin of a water heater.
Conclusions. The proposed approach to the digital twin development of a water heater provides an adequate reproduction of the real heat exchange process and can be used as part of industrial enterprises cyber-physical systems. The considered identification method can be easily extended to other types of heat exchange equipment used in heat generation and consumption systems.
Downloads
References
/References
B. Danylyshyn, “What should be the strategic directions of rebuilding the national economy”. Economic Truth. 2022. [in Ukrainian] https://www.epravda.com.ua/columns/2022/09/1/691022/
D. Broo, U. Boman, M. Törngren, “Cyber-physical systems research and education in 2030: Scenarios and strategies”. Journal of Industrial Information Integration, Vol. 21, March 2021, 100192. URL: https://doi.org/10.1016/j.jii.2020.100192
Edward A. Lee, “Cyber-Physical Systems- Are Computing Foundations Adequate?”. NSF Workshop On Cyber-Physical Systems: Research Motivation, Techniques and Roadmap, October 2006. https://ptolemy.berkeley.edu/publications/papers/06/CPSPositionPaper/
“Government Trends 2024. A report by Deloitte Center for Government Insights”. Deloitte. https://www2.deloitte.com/content/dam/insights/articles/us187225_gov-trends-24/DI_Gov-trends-24.pdf
N. Pankratova, I. Golinko, V. Pankratov, “Reliable operation of cyber-physical system with accompanied by a digital twin”. Problems of applied mathematics and mathematical modeling. 2023. Issue 23. pp. 212-223. https://doi.org/10.15421/322322
A. De Benedictis; F. Flammini; N. Mazzocca; A. Somma, F. Vitale, “Digital Twins for Anomaly Detection in the Industrial Internet of Things: Conceptual Architecture and Proof-of-Concept”. IEEE Transactions on Industrial Informatics, Vol. 19, № 12, December 2023, 11553–11563. URL: https://doi.org/10.1109/TII.2023.3246983
V. R. Shcheglov, O. I. Morozova, “Methods and technologies for developing digital twins for warrantable systems of the industrial Internet of Things”. Control, Navigation and Communication Systems, 2022, No. 4, pp. 127–137. [in Ukrainian]
A. Fuller, Z. Fan, C. Day, C. Barlow, “Digital twin: Enabling technologies, challenges and open research”. IEEE Access, Volume 8, 2020, pp. 108952–108971.
N. Pankratova, K. Grishyn, V. Barilko, “Digital Twins: Stages of Concept Development, Areas of Use, Prospects”. System Research & Information Technologies, 2023, № 2, pp. 7 – 21. https://doi.org/10.20535/SRIT.2308-8893.2023.2.01
“The Industrial Internet Reference Architecture”. An Industry IoT Consortium Foundational Document, 2022. https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/IIRA-v1.10.pdf
N. Pankratova; I. Golinko, “Development of Digital Twins to Support the Functioning of Cyber-physical Systems”. Computer Science Journal of Moldova, vol.31, № 3(93), 2023, pp. 299–320. https://doi.org/10.56415/csjm.v31.15
K. Solovchuk, “Mathematical models for typical continued computer-oriented process control”. Control systems and computers, 2018, № 5, pp. 79–92. https://doi.org/10.15407/usim.2018.05.079
M. Zgurovsky, N. Pankratova, “System analysis: Theory and Applications”. Springer, 2007. https://doi.org/10.1007/978-3-540-48880-4
I. Golinko, I. Galytska, “Dynamic heat transfer model for a water heater in state space”. Information Systems, Mechanics and Control, No. 15, 2016, pp. 83-93. [in Ukrainian] https://doi.org/10.20535/2219-380415201686207
N. Pankratova, I. Golinko, “Approach to development of digital twin model for cyber-physical system in conditions of conceptual uncertainty”. In Book Chapter M. Zgurovsky, & N. Pankratova (Eds.), System Analysis and Artificial Intelligence. Springer, 2023, Volume 1107, pp. 3 – 25. https://doi.org/10.1007/978-3-031-37450-0_1
N. Pankratova, I. Golinko “Electric heater mathematical model for cyber-physical systems”. System research & Information technologies, №2. 2021. pp. 7-17. https://doi.org/10.20535/SRIT.2308-8893.2021.2.01
Данилишин Б. Якими мають бути стратегічні напрями відбудови національної економіки. Економічна правда. 2022. URL: https://www.epravda.com.ua/columns/2022/09/1/691022/ (дата звернення: 18.12.2025).
Broo D., Boman U., Törngren M. Cyber-physical systems research and education in 2030: Scenarios and strategies. Journal of Industrial Information Integration. 2021. Volume 21. 100192. https://doi.org/10.1016/j.jii.2020.100192
Edward A. Lee Cyber-Physical Systems- Are Computing Foundations Adequate? NSF Workshop On Cyber-Physical Systems: Research Motivation, Techniques and Roadmap. October 2006. URL: https://ptolemy.berkeley.edu/publications/papers/06/CPSPositionPaper/
Government Trends 2024. A report by Deloitte Center for Government Insights. Deloitte. URL: https://www2.deloitte.com/content/dam/insights/articles/us187225_gov-trends-24/DI_Gov-trends-24.pdf (дата звернення: 18.12.2025)
Pankratova N., Golinko I., Pankratov V. Reliable operation of cyber-physical system with accompanied by a digital twin. Problems of applied mathematics and mathematical modeling. 2023. Issue 23. pp. 212-223. https://doi.org/10.15421/322322
De Benedictis A., Flammini F., Mazzocca N., Somma A., Vitale F. Digital Twins for Anomaly Detection in the Industrial Internet of Things: Conceptual Architecture and Proof-of-Concept. IEEE Transactions on Industrial Informatics. 2023. Volume 19, Issue 12. pp. 11553–11563. https://doi.org/10.1109/TII.2023.3246983
Щеглов В. Р., Морозова О. І. Методи та технології розроблення цифрових двійників для гарантоздатних систем індустріального інтернету речей. Системи управління, навігації та зв'язку. 2022. № 4. C. 127–137.
Fuller A., Fan Z., Day C., Barlow C. Digital twin: Enabling technologies, challenges and open research. IEEE Access. 2020, Volume 8. pp. 108952–108971. https://doi.org/10.1109/ACCESS.2020.2998358
Pankratova N., Grishyn K., Barilko V. Digital Twins: Stages of Concept Development, Areas of Use, Prospects. System Research & Information Technologies. 2023, № 2, pp. 7 – 21. https://doi.org/10.20535/SRIT.2308-8893.2023.2.01
The Industrial Internet Reference Architecture. An Industry IoT Consortium Foundational Document, 2022. URL: https://www.iiconsortium.org/wp-content/uploads/sites/2/2022/11/IIRA-v1.10.pdf (дата звернення: 18.12.2025)
Pankratova N., Golinko I. Development of Digital Twins to Support the Functioning of Cyber-physical Systems. Computer Science Journal of Moldova. 2023. № 3(93), pp. 299–320. https://doi.org/10.56415/csjm.v31.15
Solovchuk K. Mathematical models for typical continued computer-oriented process control. Control systems and computers. 2018. № 5. pp. 79–92. https://doi.org/10.15407/usim.2018.05.079
Zgurovsky M., Pankratova N. System analysis: Theory and Applications. Springer, 2007. https://doi.org/10.1007/978-3-540-48880-4
Голінко І., Галицька І. Динамічна модель теплообміну для водяного калорифера у просторі станів. Інформаційні системи, механіка та керування. 2016. № 15, С. 83-93. https://doi.org/10.20535/2219-380415201686207
Pankratova N., Golinko I. Approach to development of digital twin model for cyber-physical system in conditions of conceptual uncertainty. In Book Chapter M. Zgurovsky, & N. Pankratova (Eds.), System Analysis and Artificial Intelligence (Ser. Studies in Computational Intelligence, 2023. Volume 1107). Springer. pp. 3 – 25. https://doi.org/10.1007/978-3-031-37450-0_1
Pankratova N., Golinko I. Electric heater mathematical model for cyber-physical systems. System research & Information technologies. 2021. №2. pp. 7-17. https://doi.org/10.20535/SRIT.2308-8893.2021.2.01