Application of a genetic algorithm to solve the problem of scaling hydrogen systems
Abstract
The work aims to develop a robust tool for scaling hydrogen systems and their energy consumption using a genetic algorithm.
Relevance. The most common method of hydrogen production is water electrolysis, which requires a sufficient amount of electricity. If electricity sources are insufficient, this can put additional strain on the power grid, especially during peak consumption periods. Since 87% of hydrogen plants currently use hydrogen on-site (instead of generating it and then transporting it for use), there is a need for optimization in this area to improve energy efficiency and sustainability.
Current research analyzes the improvement of hydrogen systems in terms of the cost-effectiveness of systems using renewable energy sources and the reduction of hydrogen logistics costs by applying linear programming and particle swarm optimization methods.
However, these works are mainly focused on hydrogen production systems based on a single electrolyzer and do not aim to assess the feasibility of using multiple units. As a result, the topic of cost optimization and maintenance strategies for multi-electrolyzer systems remains less explored, as well as the related problem of their dispatching.
Research methods. Stochastic methods were used to solve the problem of finding the best startup queue for electrolysis units, and the effectiveness of the genetic algorithm for solving this problem was tested.
Results. A model for optimizing the peak power consumption of an electrolysis system was built, and the configuration evaluation function and objective function for system optimization were determined. The choice of a stochastic optimization method is justified by checking the objective function for the properties necessary for the effectiveness of traditional optimization methods, namely, continuity, differentiability, smoothness, and convexity. The effectiveness of the genetic method was tested in comparison with the gradient descent method on examples with different configurations of electrolyzers (similar and different types).
Conclusions. These calculations have confirmed that the genetic algorithm has stable results and is effective in finding the global optimum, while the gradient descent may stop at local minima and require additional adjustments to achieve the optimal solution.
Using the genetic algorithm method, we obtain results that give an approximate optimal result for a fixed number of steps. This approximate result, as shown in the problem with the placement of 10 electrolyzers, gives significant results — the peak electricity consumption has decreased by almost 40%.
Further research can be aimed at improving the parameters of the algorithm, in particular, adaptive tuning of the mutation and crossover operators to increase the convergence rate.
Downloads
References
/References
European Hydrogen Observatory, The European hydrogen market landscape, Report 01–November 2023, Nov. 2023. [Online]. Available: https://observatory.clean-hydrogen.europa.eu/sites/default/files/2023-11/Report%2001%20-%20November%202023%20-%20The%20European%20hydrogen%20market%20landscape.pdf
M. El-Shafie, "Hydrogen production by water electrolysis technologies: A review," Results Eng., vol. 20, p. 101426, Dec. 2023, doi: 10.1016/j.rineng.2023.101426.
J. A. Momoh, Smart Grid: Fundamentals of Design and Analysis. Hoboken, NJ, USA: Wiley-IEEE Press, 2012.
N. Almutairy, "Bidding optimization for hydrogen production from an electrolyzer," in Proc. Int. Conf., 2024, pp. 214–222, doi: 10.21741/9781644903216-28.
D. Yu, P. Yang, and W. Zhu, "Capacity optimization of photovoltaic storage hydrogen power generation system with peak shaving and frequency regulation," Sustain. Energy Res., vol. 12, 2025, doi: 10.1186/s40807-024-00141-z.
Q. Liu, Z. Zhou, J. Chen, D. Zheng, and H. Zou, "Optimization operation strategy for comprehensive energy system considering multi-mode hydrogen transportation," Processes, vol. 12, p. 2893, 2024, doi: 10.3390/pr12122893.
N. Alamir, S. Kamel, and S. Abdelkader, "Stochastic multi-layer optimization for cooperative multi-microgrid systems with hydrogen storage and demand response," Int. J. Hydrogen Energy, vol. 100, pp. 688–703, 2025, doi: 10.1016/j.ijhydene.2024.12.244.
"Research on Distributed Optimization Scheduling and Its Boundaries in Virtual Power Plants," Electronics, vol. 14, p. 932, 2025, doi: 10.3390/electronics14050932.
J. Xu, W. Chen, H. Dai, L. Xu, F. Xiao, and L. Liu, "Wireless charging scheduling for long-term utility optimization," ACM Trans. Sensor Netw., vol. 21, 2024, doi: 10.1145/3708990.
S. Zhang, S. Chen, F. Lin, X. Zhao, and G. Li, "Collaborative optimization and scheduling of source, load and storage of distribution networks considering distributed energy and load uncertainty," J. Phys.: Conf. Ser., vol. 2823, p. 012031, 2024, doi: 10.1088/1742-6596/2823/1/012031.
H. Guo, R. Huang, and S. Cheng, "Scheduling optimization based on particle swarm optimization algorithm in emergency management of long-distance natural gas pipelines," PLOS ONE, vol. 20, 2025, doi: 10.1371/journal.pone.0317737.
"Dynamic Optimization of Tunnel Construction Scheduling in a Reverse Construction Scenario," Systems, vol. 13, p. 168, 2025, doi: 10.3390/systems13030168.
J. C. Bansal, P. Bajpai, A. Rawat, and A. K. Nagar, Sine Cosine Algorithm for Optimization, SpringerBriefs in Computational Intelligence. Singapore: Springer, 2023, doi: 10.1007/978-981-19-9722-8.
A. V. Tumbrukaki, A. S. Kushniruk, and K. V. Nedialkova, Elements of combinatorics and Newton's binomial: Methodical recommendations for the organization of independent work and distance learning in the course “Elementary Mathematics” for higher education students at the first (bachelor's) level of specialty 014 Secondary Education (Mathematics). Odesa: Bondarenko M. O., 2020. [Online]. Available: http://dspace.pdpu.edu.ua/handle/123456789/9904 [in Ukrainian]
L. Koop, N. M. do Valle Ramos, A. Bonilla-Petriciolet, M. L. Corazza, and F. A. P. Voll, "A review of stochastic optimization algorithms applied in food engineering," Int. J. Chem. Eng., vol. 2024, p. 3636305, 2024, doi: 10.1155/2024/3636305.
T. Alam, S. Qamar, A. Dixit, and M. Benaida, "Genetic Algorithm: Reviews, Implementations, and Applications," Int. J. Eng. Pedagogy (iJEP), vol. 12, pp. 57–77, 2020, doi: 10.3991/ijep.v10i6.14567.
V. V. Solovey, M. M. Zipunnikov, and A. A. Shevchenko, "Investigation of the efficiency of electrode materials in electrolysis systems with a separate gas generation cycle," Probl. Mech. Eng., vol. 18, no. 2, pp. 72–76, 2015. [in Russian]
European Hydrogen Observatory. The European Hydrogen Market Landscape: Report 01, November 2023. November 2023. [Електронний ресурс]. Режим доступу: https://observatory.clean-hydrogen.europa.eu/sites/default/files/2023-11/Report%2001%20-%20November%202023%20-%20The%20European%20hydrogen%20market%20landscape.pdf .
El-Shafie M. Hydrogen production by water electrolysis technologies: A review // Results in Engineering. – 2023. – Vol. 20. – P. 101426. – DOI: 10.1016/j.rineng.2023.101426.
Momoh J. A. Smart Grid: Fundamentals of Design and Analysis. – Hoboken, NJ: Wiley-IEEE Press, 2012. – 250 p.
Almutairy N. Bidding optimization for hydrogen production from an electrolyzer // Proceedings of International Conference. – 2024. – P. 214–222. – DOI: 10.21741/9781644903216-28.
Yu D., Yang P., Zhu W. Capacity optimization of photovoltaic storage hydrogen power generation system with peak shaving and frequency regulation // Sustainable Energy Research. – 2025. – Vol. 12. – DOI: 10.1186/s40807-024-00141-z.
Liu Q., Zhou Z., Chen J., Zheng D., Zou H. Optimization operation strategy for comprehensive energy system considering multi-mode hydrogen transportation // Processes. – 2024. – Vol. 12. – P. 2893. – DOI: 10.3390/pr12122893.
Alamir N., Kamel S., Abdelkader S. Stochastic multi-layer optimization for cooperative multi-microgrid systems with hydrogen storage and demand response // International Journal of Hydrogen Energy. – 2025. – Vol. 100. – P. 688–703. – DOI: 10.1016/j.ijhydene.2024.12.244.
Research on distributed optimization scheduling and its boundaries in virtual power plants // Electronics. – 2025. – Vol. 14. – P. 932. – DOI: 10.3390/electronics14050932.
Xu J., Chen W., Dai H., Xu L., Xiao F., Liu L. Wireless charging scheduling for long-term utility optimization // ACM Transactions on Sensor Networks. – 2024. – Vol. 21. – DOI: 10.1145/3708990.
Zhang S., Chen S., Lin F., Zhao X., Li G. Collaborative optimization and scheduling of source, load and storage of distribution networks considering distributed energy and load uncertainty // Journal of Physics: Conference Series. – 2024. – Vol. 2823. – P. 012031. – DOI: 10.1088/1742-6596/2823/1/012031.
Guo H., Huang R., Cheng S. Scheduling optimization based on particle swarm optimization algorithm in emergency management of long-distance natural gas pipelines // PLOS ONE. – 2025. – Vol. 20. – DOI: 10.1371/journal.pone.0317737.
Dynamic optimization of tunnel construction scheduling in a reverse construction scenario // Systems. – 2025. – Vol. 13. – P. 168. – DOI: 10.3390/systems13030168.
Bansal J. C., Bajpai P., Rawat A., Nagar A. K. Sine Cosine Algorithm for Optimization. – Singapore: Springer, 2023. – (SpringerBriefs in Computational Intelligence). – DOI: 10.1007/978-981-19-9722-8.
Тумбрукакі А. В., Кушнірук А. С., Нєдялкова К. В. Елементи комбінаторики та біном Ньютона : методичні рекомендації для організації самостійної роботи та дистанційного навчання за курсом «Елементарна математика» здобувачів вищої освіти за першим (бакалаврським) рівнем спеціальності 014 Середня освіта (Математика). – Одеса : ФОП Бондаренко М. О., 2020. – 35 с. – Режим доступу: http://dspace.pdpu.edu.ua/handle/123456789/9904 .
Koop L., do Valle Ramos N. M., Bonilla-Petriciolet A., Corazza M. L., Voll F. A. P. A review of stochastic optimization algorithms applied in food engineering // International Journal of Chemical Engineering. – 2024. – Vol. 2024. – P. 3636305. – DOI: 10.1155/2024/3636305.
Alam T., Qamar S., Dixit A., Benaida M. Genetic algorithm: Reviews, implementations, and applications // International Journal of Engineering Pedagogy (iJEP). – 2020. – Vol. 12. – P. 57–77. – DOI: 10.3991/ijep.v10i6.14567.
Соловей В. В., Зіпунніков М. М., Шевченко А. А. Дослідження ефективності електродних матеріалів в електролізних системах з роздільним циклом генерації газів // Проблеми машинобудування. – 2015. – Т. 18, № 2. – С. 72–76.