A method for solving a boundary value problem in a multilayered area
Abstract
A mathematical model of thermal process in an electrical machine was built as an example, presented as a three-layer cylinder where internal heat sources operate in one of the layers and heat is submitted to the other two by means of heat conduction. A method of solving the boundary-value problems for heat conduction equation in a complex area – a multi-layered cylinder with internal heat sources operating in one part of the layers and external ones in another part, is proposed. A method of problem solution in conditions of uncertainty of one of the boundary condition at the layers interface with conductive heat exchange between the layers is reviewed. The principle of method lies in the averaging of temperature distributions radially in the internal layers. As a result of transformations at the layers interface a boundary condition of the impedance-type conjugation appears. The analytical and numeric-analytical solutions of simplified problems were obtained.
Downloads
References
/References
A.A. Samarsky, P.N. Vabishchevich, Computational Heat Transfer. Moscow: Editorial URSS, 2003, 785 p. [in Russian]. https://www.elibrary.ru/item.asp?id=19459203
R.D. Richtmyer, Difference Methods for Initial Value Problems. New York: Intercience, 1957, 405 p.
https://epubs.siam.org/doi/abs/10.1137/1010073
V. Lyashenko and E. Kobilskaya, “Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer,” in AMiTaNS’15, AIP Conf. Proc. Vol. 1684, edited by M.D. Todorov (American Institute of Physics, Melville, NY, 2014), paper 080009, 10p. https://aip.scitation.org/doi/abs/10.1063/1.4934320
P. Slesarenko, O.P. Demyanchenko, V. P. Lyashenko and E. B. Kobilskaya “Numerical-analytical method in mathematical models of high-temperature processes”. Visnyk of Kherson National Technical University, 3(54), pp. 467–471, 2015. [in Ukrainian] http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vkhdtu_2015_3_90
V. P. Lyashenko, N.G. Kirilaha “Mathematical model of induction heat of a relative frame skew field”. Visnyk of Zaporizhzhya National University, 3, pp. 64–69, 2002. [in Ukrainian] https://web.znu.edu.ua/herald/issues/2002/2002-mf-bio-3.pdf
V. P. Lyashenko , T. A. Hryhorova ” Investigation of the temperature field of a two-layer cylinder with different thermophysical characteristics”, Bulletin of V.N. Karazin Kharkiv National University, series «Mathematical modeling. Information technology. Automated control systems», Vol. 890, pp.47–52, 2010 [in Ukrainian] - http://nbuv.gov.ua/UJRN/VKhIMAM_2010_890_13_8
O.A. Troitsky, V.I. Stashenko, V.G. Ryzhkov, V.P. Lyashenko, and E.B. Kobilskaya “Electroplastic drawing and new technologies for creating lightweight wires”. Problems of Atomic Science and Technology, 4, pp.111–117, 2011. https://docplayer.ru/44685115-Novi-tehnologiyi-v-mashinobuduvanni.html
V. Lyashenko and T. Hryhorova, “Generalized Mathematical Model of Thermal Diffusion in Powder Metallurgy,” in AMiTaNS’14, AIP Conf. Proc. Vol. 1629, edited by M.D. Todorov (American Institute of Physics, Melville, NY, 2014), pp. 85–93. https://aip.scitation.org/doi/abs/10.1063/1.4902262
Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman lectures on physics, Vol. II: Mainly Electromagnetism and Matter. New York: New millennium edition, 2010, pp. 324–410. https://www.feynmanlectures.caltech.edu/II_toc.html
M. P. Galanin and Yu. V. Popov, Quasistationary electromagnetic fields in inhomogeneous media. Moscow: Nauka, 1995, 320 p. [in Russian].
https://www.elibrary.ru/item.asp?id=23951992
E. Tamm, Fundamentals of the Theory of Electricity. Moscow: Fizmatlit, 2003, 616 p. [in Russian]. http://www.samomudr.ru/d/Tamm%20I.E.%20_Osnovy%20teorii%20Elektrichestva_616str_2003g.pdf
L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media. Moscow: Nauka, 1982, 624 p. [in Russian]. https://radfiz.org.ua/files/k2/s3/TeopMex/Landau,Lifshic/Landay_VIII.pdf
A.V. Lykov, Theory of Heat Conductivity. Moscow: Gostekhizdat, 1967, pp. 31–32. [in Russian]. https://techliter.ru/load/uchebniki_posobya_lekcii/termodinamika_teplotekhnika/teorija_teploprovodnosti_lykov_a_v/68-1-0-166
Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. Москва: Едиториал УРСС, 2003. 784 с. https://www.elibrary.ru/item.asp?id=19459203
R.D. Richtmyer, Difference Methods for Initial Value Problems. New York: Intercience, 1957, 405 p. https://epubs.siam.org/doi/abs/10.1137/1010073
Lyashenko V., Kobilskaya E. Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer. Application of Mathematics in Technical and Natural Sciences: AIP Conf. Proc., June 28-July 3, 2015. American Institute of Physics, Melville, NY, 2015. P.080009-1 – 080009-10. https://aip.scitation.org/doi/abs/10.1063/1.4934320
Слесаренко А. П., Дем’янченко О. П., Ляшенко В. П., Кобильська О. Б. Чисельно-аналітичний метод у математичних моделях високотемпературних процесів. Вісник Херсонського національного технічного університету. 2015. Вып. 3(54). С. 467–471. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vkhdtu_2015_3_90
Ляшенко В.П., Кирилаха Н.Г. Математична модель індукційного нагріву рухомого тіла. Вісник Запорізького державного університету. 2002. № 3. С.64–69. https://web.znu.edu.ua/herald/issues/2002/2002-mf-bio-3.pdf
Ляшенко В. П., Григорова Т. А.Дослідження температурного поля двошарового циліндра з різними теплофізичними характеристиками. Вісник Харківського національного університету ім. В.Н. Каразіна серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління» 2010. № 890, Вип. 13. С. 47–52. http://nbuv.gov.ua/UJRN/VKhIMAM_2010_890_13_8
Кобильська О. Б., Троицкий О.А., Сташенко В.И., Рыжков В.Г., Ляшенко В.П. Электропластическое волочение и новые технологии создания облегченных проводов. Журнал «Вопросы атомной науки и техники». 2011. Вип. 4/2011. С. 111 – 117 https://docplayer.ru/44685115-Novi-tehnologiyi-v-mashinobuduvanni.html
Lyashenko V., Hryhorova T. Generalized Mathematical Model of Thermal Diffusion in Powder Metallurgy. Application of Mathematics in Technical and Natural Sciences: AIP Conf. Proc., June 26-July 1, 2014. American Institute of Physics, Melville, NY, 2014. P. 85–93. https://aip.scitation.org/doi/abs/10.1063/1.4902262
Richard P. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman lectures on physics, Vol. II: Mainly Electromagnetism and Matter. New York: New millennium edition, 2010, pp. 324–410. https://www.feynmanlectures.caltech.edu/II_toc.html
Галанин М.П., Попов Ю.П. Квазистационарные электромагнитные поля в неоднородных средах: Математическое моделирование. Москва: Физматлит, 1995. 320 с. https://www.elibrary.ru/item.asp?id=23951992
Тамм И.Е. Основы теории электричества. Москва: Физматлит, 2003. 616 с. http://www.samomudr.ru/d/Tamm%20I.E.%20_Osnovy%20teorii%20Elektrichestva_616str_2003g.pdf
Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. Москва:Наука,1982. 624 с. https://radfiz.org.ua/files/k2/s3/TeopMex/Landau,Lifshic/Landay_VIII.pdf
Лыков А.В. Теория теплопроводности. Москва: Гостехиздат, 1952. 392 с. https://techliter.ru/load/uchebniki_posobya_lekcii/termodinamika_teplotekhnika/teorija_teploprovodnosti_lykov_a_v/68-1-0-166