The mathematical model of the thermal process in Spoke-Type Permanent Magnet Synchronous Machines
Abstract
This paper presents an mathematical model for the prediction of temperature field distribution in spoke-type permanent magnet synchronous machines. The mathematical model takes into account radial heat transfer streams; it is presented as a boundary problem in a multilayer non-canonical region with conjugation conditions at the boundaries of the layers, with different thermal physical properties. The entire study area is divided into five types of simple subdomains, including a shaft, an inner fan-shaped magnet, an outer fan-shaped magnet, a slot opening and a slot. Moreover, on the border of the inner and outer fan-shaped magnets in slot opening and a slot, we have an perfect thermal contact. The problem is solved by the finite element method. Using the results of numerical experiments, the model allows you to control the temperature field of the machine, allows you to calculate the temperature distribution in its individual parts.
Downloads
References
/References
Petter Eklund, Jonathan Sjölund, Sandra Eriksson, Mats Leijon, “Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator”, International Scholarly and Scientific Research & Innovation, vol. 11, no 3, pp. 605–610, 2017.
Peixin Liang,Yulong Pei, Feng Chaiand Shukang Cheng, “Equivalent stator slot model of temperature field for high torque-density permanent magnet synchronous in-wheel motors accounting for winding type”, COMPEL International Journal of Computations and Mathematics in Electrical, vol.35, no 2, pp. 3457–3462, 2016.
N. Bracikowski, M. Hecquet, P. Brochet, and S. V. Shirinskii, "Multiphysics Modeling of a Permanent Magnet Synchronous Machine by Using Lumped Models", IEEE Trans. Ind. Electron, vol. 59, no. 6, pp. 2426-2437, 2012.
T. Sun and J. Wang, “Extension of Virtual-Signal-Injection-Based MTPA Control for Interior Permanent-Magnet Synchronous Machine Drives Into the Field-Weakening Region”, IEEE Trans. Ind.Electron., vol. 62, no. 11, pp. 6809-6817, 2015.
Jingang Bai, Yong Liu , Yi Sui, Chengde Tong, Quanbin Zhao and Jiawei Zhang, “Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine” , Energies, vol. 7, pp. 1393–1426, 2014.
Viktor Lyashenko, Elena Kobilskaya, Maryna Martynenko And Olga Demyanchenko, “Thermal process mathematical model in electrical machine” , in Proceedings of the International Conference MEES’17, IEEE, Kremenchuk, 2017, pp. 296–299.
A. Zaika, O. Hrytsiuk, E. Kobilskaya, and V. Lyashenko, “The generalized mathematical model of heat conduction in a complex multi-layered area”, AIP Conference Proceedings. vol. 1895, pp. 090004–090014, 2017.
A. Zaika, O. Demyanchenko ,O. Hrytsiuk, E. Kobilskaya, and V. Lyashenko, T. Hryhorova, “Mathematical model of heat transfer in an electric machine”, AIP Conference Proceedings. vol. 2025, pp. 080006-1–080006-7, 2018.
B. I. Kopylov, Mathematical Models of Electric Machines. Moscow: Vysshaya shkola, 1987 [in Russian]
A.A. Zhelezniak, L. N. Bezmennikova, V.A. Zhukov and V.L. Erofeev, ”Diagnosis of Thermal Processes in Motors of the Electrical Objects” in International Conference on Information Technologies in Business and Industry, Journal of Physics. Series 803, Tomsk Polytechnic University, Tomsk. Russia, 2017, pp. 012184–012190.
V.V. Prus, M.V. Zagirnyak, I.A. Kolotylo, D. Miljavec, “Estimate and taking into account change of steel losses in induction motors in process of their aging” , in Proceedings of International IEEE Conference EUROCON, Saint Petersburg, 2009, pp 790–795.
X. Ge, Z. Q. Zhu, J. B. Li, and J. T. Chen, “A spoke-type IPM machine with novel alternate airspace barriers and reduction of unipolar leakage flux by step-staggered rotor” , in IEEE International Electric Machines Drives Conference (IEMDC), Coeur d'Alene, ID, USA, May 2015, pp. 53–59.
Xypteras, J.; Hatziathanassiou, V. “Thermal analysis of an electrical machine taking into account the iron losses and the deep-bar effect”, IEEE Trans. Energy Conver,.vol.14, pp. 996–1003,1999.
V. Lyashenko, E. Kobilskaya, O. Demyanchenko, “Mathematical Model with complex heat transfer conductions in the spherical area”, Transactions оf Kremenchuk Mykhailo Ostrohradskyi National University, vol. 6/2017 (106), pp. 37–43, 2017. [in Ukrainian]
Jeffery Cooper , Introduction to Partial Differential Equations with MATLAB.Boston: Birkhäuser, 1998.
V.E. Shmelev, Partial differential equations toolbox. Toolbox for solution of differential equations in partial derivatives [in Russian]. http://matlab.exponenta.ru/pde/book1/index.php[in Russian]
F. Hurtado, M. Noy, J. Urrutia. “Flipping edges intriangulations”, Urrutia Discrete & Computational Geometry, vol.22 (3), 333–346, 1999.
Peixin Liang, Feng Chai, Yi Li, and Yulong Pei. Analytical Prediction of Magnetic Field Distribution in Spoke-Type Permanent-Magnet Synchronous Machines Accounting for Bridge Saturation and Magnet Shape. IEEE Trans.on Industrial Electronics. 2017. Vol. 64, Issue: 5. P. 3479– 3488.
Eklund Petter, Sjölund Jonathan, Eriksson Sandra, Leijon Mats. Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator. International Scholarly and Scientific Research & Innovation. 2017. Vol. 11, № 3. P. 605–610.
Peixin Liang,Yulong Pei, Feng Chaiand Shukang Cheng. Equivalent stator slot model of temperature field for high torque-density permanent magnet synchronous in-wheel motors accounting for winding type. COMPEL International Journal of Computations and Mathematics in Electrical. 2016. Vol.35, № 2. P. 713–727.
Bracikowski N., Hecquet M., Brochet P., and Shirinskii S. V.. Multiphysics Modeling of a Permanent Magnet Synchronous Machine by Using Lumped Models. IEEE Trans. Ind. Electron. 2012. Vol. 59, № 6. P. 2426-2437.
Sun T., Wang J. Extension of Virtual-Signal-Injection-Based MTPA Control for Interior Permanent-Magnet Synchronous Machine Drives Into the Field-Weakening Region. IEEE Trans. Ind.Electron. 2015. Vol. 62, № 11. P. 6809-6817.
Jingang Bai, Yong Liu , Yi Sui, Chengde Tong, Quanbin Zhao and Jiawei Zhang. Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine. Energies. 2014. Vol. 7. P. 1393–1426.
Lyashenko Viktor, Kobilskaya Elena, Martynenko Maryna And Demyanchenko Olga. Thermal process mathematical model in electrical machine. Modern Electrical and Energy Systems (MEES): 2017 year: Proceedings of the International Conference, 15-17 Nov. 2017. Kremenchuk: KrNU, 2017. P. 296–299.
Zaika A., Hrytsiuk O., Kobilskaya E., and Lyashenko V. The generalized mathematical model of heat conduction in a complex multi-layered area. AIP Conference Proceedings. 2017. Vol. 1895. P. 090004–090014.
Zaika A., Demyanchenko O., Hrytsiuk O., Kobilskaya E., and Lyashenko V., Hryhorova T.. Mathematical model of heat transfer in an electric machine. AIP Conference Proceedings. 2018. Vol. 2025. P. 080006-1–080006-7.
Копылов И.П. Математическое моделирование электрических машин: Учеб. для вузов. Москва: Высшая шк., 1987 248 с.
Zhelezniak A.A., Bezmennikova L. N., Zhukov V.A. and Erofeev V.L. Diagnosis of Thermal Processes in Motors of the Electrical Objects. International Conference on Information Technologies in Business and Industry: 2017 year: Journal of Physics: Conference Series, Vol. 803, 21–26 September 2016. Tomsk, Russian Federation. P. 012184–012190.
Prus V.V., Zagirnyak M.V., Kolotylo I.A., Miljavec D. Estimate and taking into account change of steel losses in induction motors in process of their aging EUROCON: 2009 year: Proceedings of International IEEE Conference, 18-23 May 2009. Saint Petersburg, Russian Federation. P. 790–795.
X. Ge, Z. Q. Zhu, J. B. Li, and J. T. Chen. A spoke-type IPM machine with novel alternate airspace barriers and reduction of unipolar leakage flux by step-staggered rotor. IEEE International Electric Machines Drives Conference (IEMDC): 2015 year: Proceedings of IEMDC, 10-13 May 2015. Coeur d'Alene, ID, USA. P. 53–59.
Xypteras J., Hatziathanassiou V. Thermal analysis of an electrical machine taking into account the iron losses and the deep-bar effect. IEEE Trans. Energy Convers. 1999. № 14. P. 996–1003.
Кобильська О. Б., Ляшенко В. П, Дем’янченко О. П. Математичні моделі теплообміну з умовами імпедансного типу у багатошарових областях. Вісник КрНУ ім. М. Остроградського. 2017. Вип. 6, Ч. 1. С. 37–43.
Cooper Jeffery. Introduction to Partial Differential Equations with MATLAB. Boston: Birkhäuser, 1998. 533 p.
Шмелев В. Е. Partial Differential Equations Toolbox. Инструментарий решения дифференциальных уравнений в частных производных: учебное пособие. URL:http://matlab.exponenta.ru/pde/index.php
Hurtado F., M. Noy, J. Urrutia. Flipping edges intriangulations. Discrete & Computational Geometry.1999. Vol. 22 (3). P 333–346.