The method for calculating singular integrals in problems of axially symmetric Stokes flows
Abstract
The flow of a viscous fluid at small Reynolds numbers (Stokes flow) in a three-dimensional formulation is investigated. In this case, the inertial terms in the equations of motion can be neglected. Such flows can occur in nanotubes that can be considered as inclusions in representative volume elements of nanomaterials. By using the fundamental solution of Ossen, an integral representation of the velocity is proposed. This representation is used to receive an integral equation for an unknown density. The solution of the resulting equation makes it possible to calculate the fluid pressure on the walls of the shell. The case of axially symmetric flows is investigated. For this, an integral representation of the unknown velocity in cylindrical coordinates is obtained. By integrating over the circumferential coordinate, the two-dimensional singular integral equation is reduced to one-dimensional one. It has been proved that the components of the kernels in singular operators are expressed in terms of elliptic integrals of the first and second kind. It has been proved that the singularities of the kernels of one-dimensional singular integral equations have a logarithmic character. To calculate elliptic integrals, the Gaussian algorithm based on the use of the arithmetic-geometric mean value is proposed. This procedure allows us to obtain logarithmic singular components with high accuracy, which makes it possible to use special quadrature formulas to calculate such integrals. An algorithm with usage of the boundary element method for the numerical solution of the obtained singular integral equations is proposed. The method for solving one-dimensional singular equations, where the kernels contain elliptic integrals with logarithmic singularities (i.e logarithmic singularity is not expressed explicitly) has been tested. The obtained numerical results have been compared with the well-known analytical solutions. The data obtained indicate the high efficiency of the proposed numerical method.
Downloads
References
/References
Sigalas, M., Kushwaga, M.S., Economou, E.N., Kafesaki, M., Psarobas, I.E., Steurer, W., “Classical vibrational modes in phononic lattices: theory and experiment”. Zeitschrift für Kristallographie 220, 765- 809, 2005.
Wang, W., Zeng, W., Ding, J., “Finite element modeling of two-dimensional nanoscale structures with surface effects”. World Acad. Sci. Eng. Technol. 46, 12-20, 2010.
Kushch V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L., “Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces”. International Journal of Solids and Structures 50, 1141-1153, 2013.
Mykhas’kiv, V.V., Zhbadynskyi, I.Ya., Zhang, Ch., “Dynamic stresses due to time-harmonic elastic wave incidence on doubly periodic array of penny-shaped cracks”. Journal of Mathematical Sciences 203, 114-122, 2014.
Mykhas’kiv V.V., Stasyuk B.M. “Effective elastic properties of 3D composites with short curvilinear fibers: numerical simulation and experimental validation”. Solid State Phenomena. Vol. 258, P. 452-455, 2017.
Kushch V.I. “Stress field and effective elastic moduli of periodic spheroidal particle composite with Gurtin-Murdoch interface”. International Journal of Engineering Science. Vol. 132, P. 79–96, 2018.
Dehtyarʹov K.H., Hnitʹko V.I., Strelʹnikova О.О., Tonkonozhenko A.M. “Rozrakhunkovi modeli na osnovi metodiv skinchenykh ta hranychnykh metodiv dlya analizu mekhanichnykh vlastyvostey tryvymirnykh nanokompozytiv ”. Prykladni pytannya matematychnoho modelyuvannya.T. 2, S. 43–54, 2018.
Deymier, P.A., Acoustic Metamaterials and Phononic Crystals, Berlin, Springer, 2013, 334 p.
Gnitko V. Naumemko Y., Strelnikova E., “Low Frequency Sloshing Analysis of Cylindrical Containers with Flat аnd Conical Baffles”. International Journal of Applied Mechanics and Engineering. Vol. 22, Issue 4, Р. 867-881, 2017. DOI: 10.1515/ijame-2017-0056.
Yeseleva Ye.V. Sobstvennyye kolebaniya sosudov vysokogo davleniya pri vzaimodeystvii s zhidkost'yu / Ye.V. Yeseleva, V.I. Gnit'ko, Ye.A. Strel'nikova // Probl. mashinostroyeniya. – 2006. T.9 , №1. S.105 - 118. [in Russian]
Gnitko V., Degtyariov K., Karaiev A., Strelnikova E., Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity, WIT Transactions on Engineering Sciences, 122, WIT Press, pp.13-25, 2019. DOI: 10.2495/BE410021.
Rivera, J.L., Starr, F.W.: Rapid transport of water via carbon nanotube. J.Phys. Chem. C 114, 3737–3742 (2010)
Chivilikhin, S.A., Gusarov, V.V., Popov, I.Yu.: Flows in nanostructures: hybrid classical-quantum model. Nanosyst. Phys. Chem. Math. 3, 7–26 (2012)
Loytsyanskiy L.G. Mekhanika zhidkosti i gaza. Moskva, Nauka, 1970, 904 s. [in Russian]
Paul, D.R.: Creating new types of carbon-based membranes. Science 335(6067), 411–413 (2012).
Popov, I.Yu., Chivilikhin, S.A., Gusarov, V.V.: Model of fluid flow in nanotube: classical and quantum features. J. Phys. Conf. Ser. 248, 012006/1-8 (2010)
Popov, I.Yu.: Statistical derivation ofmodified hydrodynamic equations for nanotube flows. Phys. Scr. 83, 045601/1-3 (2011)
Ackerberg, R.C.: The viscous incompressible flow inside a cone. J. Fluid Mech. 21, 47–81 (1965).
Cortez R. The Method of Regularized Stokeslet. Society for Industrial and Applied Mathematics. Vol. 23, N4, P. 1204-1225 (2001).
Oseen C. W., Uber die Stoke’sche Formel und ¨uber eine ¨ verwandte Aufgabe in der Hydrodynamik Almqvist & Wiksell, 1911, Arkiv för matematik, astronomi och fysik, vi (29)
Naumenko V.V., Strelnikova H.A. Singular integral accuracy of calculations in two-dimensional problems using boundary element methods. Engineering analysis with boundary elements. №26, pp. 95-98, 2002.
Ye.A. Kantor, Ye.A. Strel'nikova. Gipersingulyarnyye integral'nyye uravneniya v zadachakh mekhaniki sploshnoy sredy. Khar'kov: Novoye slovo, 2005, 252 s. [in Russian]
Sigalas M., Kushwaga M.S., Economou E.N., Kafesaki M., Psarobas, I.E., Steurer, W., Classical vibrational modes in phononic lattices: theory and experiment. Zeitschrift für Kristallographie 220. 2005. 765- 809.
Wang, W., Zeng, W., Ding, J., Finite element modeling of two-dimensional nanoscale structures with surface effects. World Acad. Sci. Eng. Technol. 46. 2010. 12-20.
Kushch V.I., Mogilevskaya, S.G., Stolarski, H.K., Crouch, S.L., 2013. Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces. International Journal of Solids and Structures 50. 1141-1153.
Mykhas’kiv, V.V., Zhbadynskyi, I.Ya., Zhang, Ch., 2014. Dynamic stresses due to time-harmonic elastic wave incidence on doubly periodic array of penny-shaped cracks. Journal of Mathematical Sciences 203. 114-122.
Mykhas’kiv V.V., B.M Stasyuk. Effective elastic properties of 3D composites with short curvilinear fibers: numerical simulation and experimental validation. Solid State Phenomena. 2017. Vol. 258. P. 452-455.
Kushch V.I. Stress field and effective elastic moduli of periodic spheroidal particle composite with Gurtin-Murdoch interface. International Journal of Engineering Science. 2018. Vol. 132. P. 79–96.
Дегтярьов К.Г., Гнітько В.І., Стрельнікова О.О., Тонконоженко А.М. Розрахункові моделі на основі методів скінчених та граничних методів для аналізу механічних властивостей тривимірних нанокомпозитів . Прикладні питання математичного моделювання. 2018. T. 2. С. 43–54.
Deymier, P.A. , Acoustic Metamaterials and Phononic Crystal. Berlin, Springer. 2013. 334 p.
Gnitko V., Naumemko Y., Strelnikova E. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat аnd Conical Baffles. International Journal of Applied Mechanics and Engineering. 2017. Vol. 22. Issue 4. Р. 867-881. DOI: 10.1515/ijame-2017-0056.
Еселева Е.В. Гнитько В.И., Стрельникова Е.А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Пробл. машиностроения. 2006. T.9 . №1. С.105 - 118.
Gnitko V., Degtyariov K., Karaiev A., Strelnikova E., Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity, WIT Transactions on Engineering Sciences, 122, WIT Press, pp.13-25, 2019. DOI: 10.2495/BE410021.
Rivera, J.L., Starr, F.W.: Rapid transport of water via carbon nanotube. J.Phys. Chem. C 114, 3737–3742 (2010).
Chivilikhin, S.A., Gusarov, V.V., Popov, I.Yu.: Flows in nanostructures: hybrid classical-quantum model. Nanosyst. Phys. Chem. Math. 3, 7–26 (2012).
ЛойцянскийЛ.Г. Механика жидкости и газа. Москва, Наука, 1970, 904 с.
Paul, D.R.: Creating new types of carbon-based membranes. Science 335(6067), 411–413 (2012)
Popov, I.Yu., Chivilikhin, S.A., Gusarov, V.V.: Model of fluid flow in nanotube: classical and quantum features. J. Phys. Conf. Ser. 248, 012006/1-8 (2010)
Popov, I.Yu.: Statistical derivation ofmodified hydrodynamic equations for nanotube flows. Phys. Scr. 83, 045601/1-3 (2011)
Ackerberg, R.C.: The viscous incompressible flow inside a cone. J. Fluid Mech. 21, 47–81 (1965)
Cortez R. The Method of Regularized Stokeslet. Society for Industrial and Applied Mathematics. Vol. 23, N4, P. 1204-1225 (2001).
Oseen C. W., Uber die Stoke’sche Formel und ¨uber eine ¨ verwandte Aufgabe in der Hydrodynamik Almqvist & Wiksell, 1911, Arkiv för matematik, astronomi och fysik, vi (29)
Naumenko V.V., Strelnikova H.A. Singular integral accuracy of calculations in two-dimensional problems using boundary element methods. Engineering analysis with boundary elements. №26, pp. 95-98, 2002.
Кантор Б.Я. Стрельникова Е.А. Гиперсингулярные интегральные уравнения в задачах механики сплошной среды. .Харьков: Новое слово, 2005. 252 с.