Hydroelastic vibrations of shells of revolution under combined vertical and horizontal loadings
Abstract
The operation of modern structures occurs under conditions of high technological loads. Shells of rotation are among the most applicable structural elements. The operating conditions of such elements provide for the influence of the environment such as the interaction of elastic shell elements with liquid or gas. The oscillations of the elastic shell of rotation, which are partially filled with liquid, under external loads in the vertical and horizontal directions simultaneously, are considered in the paper. The liquid is supposed to be ideal and incompressible, and its motion under the applied loads is irrotational. This allows us to introduce the velocity potential to calculate the pressure of the fluid on the surface of the shell and determine the function which describes the level of the free surface lift. At the first stage, the frequencies and forms of free oscillations of the shell with liquid are determined. These frequencies are usually divided into two separate spectra: the free surface vibration frequency and the elastic wall vibration frequency. The boundary element method is used for numerical implementation. It is found that for sufficiently thin elastic tank walls, the fundamental frequency of the coupled vibrations can be much lower than the frequency of the fluid in a shell with rigid walls. As the tank wall thickness increases, this effect becomes insignificant, and the lower vibration frequency of the shell with liquid approaches the vibration frequency of the liquid in a rigid tank. The second stage of the study is related to the analysis of combined horizontal and vertical loads. The cases when the load frequencies are close to the fundamental frequency of sloshing and to the lower frequency of vibration of elastic walls are considered. The effect of parametric resonance has been investigated. The influence of the presence of partitions on the motion of the shell with the liquid at free and forced oscillations has been found out.
Downloads
References
/References
Missouri C. Yu., Smetankina NV, Missouri E. Yu. Rational modeling of a hydroturbine cover for strength analysis. Visn. Nat. tech. KhPI University. Ser. Dynamics and strength of machines. 2019. № 1. S. 34–39. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44370 [in Ukrainian]
Ganchin EV, Rzhevskaya IE, Strelnikova EA Investigation of the dynamic characteristics of the impellers of rotary-vane hydraulic turbines when interacting with a liquid. Bulletin of Kharkiv National University, 2009. - № 847. - P. 79-86. http://mia.univer.kharkov.ua/11/30078.pdf [in Ukrainian]
Degtyarev KG, Strelnikova EA, Sheludko GA Computer modeling of wind turbine blades with optimal parameters / Visn. Kharkiv National University VN University Karazina. Series: Mathematical modeling. Information Technology. Automated control systems, No 19, 2012, P.81-86 http://mia.univer.kharkov.ua/19/30251.pdf [in Ukrainian]
Serikova E., Strelnikova E., Yakovlev V. Mathematical model of dangerous changing the groundwater level in Ukrainian industrial cities. Journal of Environment Protection and Sustainable Development. 2015. Vol.1. P. 86-90. URL: https://www.researchgate.net/publication/281784323 [in English]
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering Vol.3, No.1, 2018, pp.15-52 http://jomardpublishing.com/UploadFiles/Files/journals/JTME/V3No1/StrelnikovaE.pdf [in English]
Karaiev A., Strelnikova E. Liquid Sloshing in Circular Toroidal and Coaxial Cylindrical Shells. In: Ivanov V., Pavlenko I., Liaposhchenko O., Machado J., Edl M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2020. Р.3-13. DOI: 10.1007/978-3-030-50491-5_1 [in English]
Degtyarev K.G., Gnitko V.I., Tonkonozhenko A.M. Computer simulation of the destructive load on the fuel tank. Bulletin of Kharkiv National University named after VN Karazin, series "Mathematical modeling. Information Technology. Automated control systems "N 1105, 2014, P.51-59. http://nbuv.gov.ua/UJRN/VKhIMAM_2014_1105_24_7 [in Ukrainian]
Behshad, A,. Shekari, M.: A boundary element study for evaluation of the effects of the rigid baffles on liquid sloshing in rigid containers. International Journal of Maritime Technology № 10, 2018, рр.45-54, DOI: 10.29252/ijmt.10.45 [in English]
Mohammad Yaghoub Abdollahzadeh Jamalabadi. Analytical Solution of Sloshing in a Cylindrical Tank with an Elastic Cover. Mathematics 2019, 7(11), 1070; https://doi.org/10.3390/math7111070 https://periodicals.karazin.ua/mia/issue/download/773/940 [in English]
Kryutchenko D. Modeling of fluid oscillations in prismatic tanks with cross partitions. Bulletin of Kharkiv National University named after VN Karazin, series "Mathematical modeling. Information Technology. Automated control systems "N 44, 2019, P. 43-50. https://doi.org/10.26565/2304-6201-2019-44-05 [in Ukrainian]
Wenyuan Wang, Quansheng Zang, Zhijun Wei, Zijian Guo, An isogeometric boundary element method for liquid sloshing in the horizontal eccentric annular tanks with multiple porous baffles, Ocean Engineering, Volume 189, 2019, 106367, https://doi.org/10.1016/j.oceaneng.2019.106367[in English]
Strelnikova E.A., Choudhary N., Kriutchenko D.V., Gnitko V.I., Tonkonozhenko A.M. Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations, Engineering Analysis with Boundary Elements, 2020, 120, pp. 13–27. DOI: 10.1016/j.enganabound.2020.07.024 [in English]
Naumenko V.V., Strelnikova H.A. Singular integral accuracy of calculations in two-dimensional problems using boundary element methods. Engineering analysis with boundary elements. №26, pp. 95-98, 2002. DOI: 10.1016/S0955-7997(01)00041-8 [in English]
Karaiev A., Strelnikova E. Singular integrals in axisymmetric problems of elastostatics. International Journal of Modeling, Simulation, and Scientific Computing., 2020, Vol. 11, № 1, 2050003. DOI: 10.1142/S1793962320500038 [in English]
Gnitko V., Degtyariov K., Karaiev A. and Strelnikova E. Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity, WIT Transactions on Engineering Sciences, Vol. 122, WIT Press, pp.13-25, 2019. DOI: 10.2495/BE410021 [in English]
Raynovskyy, I.A., Timokha, A.N.: Sloshing in Upright Circular Containers: Theory, Analytical Solutions, and Applications. CRC Press/Taylor & Francis Group, (2020). 170 pp.. ISBN 9780367362898 [in English]
Ravnik, J., Strelnikova, E., Gnitko V., Degtyarev, K., Ogorodnyk,U., BEM and FEM analysis of fluid-structure interaction in a double tank, Engineering Analysis with Boundary Elements, 67, pp. 13-25, 2016. https://doi.org/10.1016/j.enganabound.2016.02.006 [in English]
Ibrahim, R. A., Pilipchuk, V. N., and Ikeda, T. (March 1, 2001). "Recent Advances in Liquid Sloshing Dynamics." ASME. Appl. Mech. Rev. March 2001; 54(2): 133–199. https://doi.org/10.1115/1.3097293 [in English]
Місюра C. Ю., Сметанкіна Н. В., Місюра Є. Ю. Раціональне моделювання кришки гідротурбіни для аналізу міцності. Вісн. Нац. техн. ун-ту «ХПІ». Сер. Динаміка і міцність машин. 2019. № 1. С. 34–39. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44370
Ганчин Е.В., Ржевская И.Е., Стрельникова Е.А. Исследование динамических характеристик лопастей рабочих колес поворотно-лопастных гидротурбин при взаимодействии с жидкостью. Вісник Харківського національного університету, 2009. – № 847. – С. 79-86. http://mia.univer.kharkov.ua/11/30078.pdf
Дегтярев К.Г., Стрельникова Е. А., Шелудько Г. А. Компьютерное моделирование лопастей ветроустановок с оптимальными параметрами / Вісн. Харківського нац. ун-ту імені В.Н. Каразіна. Серія: Математичне моделювання. Інформаційні технології. Автоматизовані системи управління, No 19, 2012, С.81-86 http://mia.univer.kharkov.ua/19/30251.pdf
Serikova E., Strelnikova E., Yakovlev V. Mathematical model of dangerous changing the groundwater level in Ukrainian industrial cities. Journal of Environment Protection and Sustainable Development. 2015. Vol.1. P. 86-90. URL: https://www.researchgate.net/publication/281784323
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering Vol.3, No.1, 2018, pp.15-52 http://jomardpublishing.com/UploadFiles/Files/journals/JTME/V3No1/StrelnikovaE.pdf
Karaiev A., Strelnikova E. Liquid Sloshing in Circular Toroidal and Coaxial Cylindrical Shells. In: Ivanov V., Pavlenko I., Liaposhchenko O., Machado J., Edl M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, 2020. Р.3-13. DOI: 10.1007/978-3-030-50491-5_1
Дегтярев К.Г., Гнитько В.И., Тонконоженко А.М. Компьютерное моделирование разрушающей нагрузки на топливный бак. Вісник Харківського національного університету імені ВН Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління» N 1105, 2014, С.51-59. http://nbuv.gov.ua/UJRN/VKhIMAM_2014_1105_24_7
Behshad, A,. Shekari, M.: A boundary element study for evaluation of the effects of the rigid baffles on liquid sloshing in rigid containers. International Journal of Maritime Technology № 10, 2018, рр.45-54, DOI: 10.29252/ijmt.10.45.
Mohammad Yaghoub Abdollahzadeh Jamalabadi. Analytical Solution of Sloshing in a Cylindrical Tank with an Elastic Cover. Mathematics 2019, 7(11), 1070; https://doi.org/10.3390/math7111070
Крютченко Д. Моделювання коливань рідини в призматичних резервуарах з хрестовими перегородками. Вісник Харківського національного університету імені ВН Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління» N 44, 2019, С. 43-50. https://doi.org/10.26565/2304-6201-2019-44-05
Wenyuan Wang, Quansheng Zang, Zhijun Wei, Zijian Guo, An isogeometric boundary element method for liquid sloshing in the horizontal eccentric annular tanks with multiple porous baffles, Ocean Engineering, Volume 189, 2019, 106367, https://doi.org/10.1016/j.oceaneng.2019.106367
Strelnikova E.A., Choudhary N., Kriutchenko D.V., Gnitko V.I., Tonkonozhenko A.M. Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations, Engineering Analysis with Boundary Elements, 2020, 120, pp. 13–27. DOI: 10.1016/j.enganabound.2020.07.024
Naumenko V.V., Strelnikova H.A. Singular integral accuracy of calculations in two-dimensional problems using boundary element methods. Engineering analysis with boundary elements. №26, pp. 95-98, 2002. DOI: 10.1016/S0955-7997(01)00041-8
Karaiev A., Strelnikova E. Singular integrals in axisymmetric problems of elastostatics. International Journal of Modeling, Simulation, and Scientific Computing. 2020 Vol. 11, № 1, 2050003. DOI: 10.1142/S1793962320500038
Gnitko V., Degtyariov K., Karaiev A. and Strelnikova E. Multi-domain boundary element method for axisymmetric problems in potential theory and linear isotropic elasticity, WIT Transactions on Engineering Sciences, Vol. 122, WIT Press, pp.13-25, 2019. DOI: 10.2495/BE410021
Raynovskyy, I.A., Timokha, A.N.: Sloshing in Upright Circular Containers: Theory, Analytical Solutions, and Applications. CRC Press/Taylor & Francis Group, (2020). 170 pp.. ISBN 9780367362898
Ravnik, J., Strelnikova, E., Gnitko V., Degtyarev, K., Ogorodnyk,U., BEM and FEM analysis of fluid-structure interaction in a double tank, Engineering Analysis with Boundary Elements, 67, pp. 13-25, 2016. https://doi.org/10.1016/j.enganabound.2016.02.006
Ibrahim, R. A., Pilipchuk, V. N., and Ikeda, T. (March 1, 2001). "Recent Advances in Liquid Sloshing Dynamics." ASME. Appl. Mech. Rev. March 2001; 54(2): 133–199. https://doi.org/10.1115/1.3097293