Computer simulating the forced vibrations of structure elements interacting with liquid under harmonic, impulse and seismic excitations
Abstract
The method for simulating forced vibrations of structure elements, which interact with water medium during service is developed. Harmonic, impulse and seismic loadings are accounted for. It is assumed that the fluid surrounding the structure element is an ideal and incompressible one, and its movement caused by the vibrations of the element in question is vortex-free. Therefore the velocity potential that satisfies the Laplace equation exists. To determine the fluid pressure on the surfaces contacting with the liquid the Cauchy-Lagrange integral is used. The velocity potential is determined by solving the Neumann boundary value problem for the Laplace equation on an open surface. The potential of the double layer is used as an integral representation. This potential satisfies the Laplace equation and the conditions for vanishing velocity at infinity. The non-penetration condition leads to the necessity of solving the hypersingular integral equation for the pressure drop. To solve the boundary value problem of hydroelasticity the method of given forms is applied. The unknown displacements and potential are represented as series with unknown coefficients. The basic functions in these series are the modes of vibrations of the element without liquid. The frequencies of the structure element vibrations in fluid are evaluated taking the added masses into account. For simulating forced vibrations the system of second order differential equations relatively to the unknown time-dependent coefficients is obtained. The vibrations of a rigidly clamped square plate are examined as an example. The behavior of the maximum stress intensity is analyzed in dependence with the loading parameters. The estimations for critical values of load parameters are provided.
Downloads
References
/References
Eseleva E.V, Gnitko V.I., Strelnikova E.A., “Sobstvennyie kolebaniya sosudov vyisokogo davleniya pri vzaimodeystvii s zhidkostyu”. Problemyi mashinostroeniya, N 1, S.105-118, 2006. [in Russian]
Gnitko, V., Naumemko, Y., Strelnikova E. “Low frequency sloshing analysis of cylindrical containers with flat and conical baffles”. International Journal of Applied Mechanics and Engineering, 22 (4), pp.867-881, 2017.
Ganchin E.V., Rzhevskaya I.E., Strelnikova E.A. “Issledovanie dinamicheskih harakteristik lopastej rabochih koles povorotno-lopastnyh gidroturbin pri vzaimodejstvii s zhidkostyu”. Visnik Harkivskogo nacionalnogo universitetu, № 847, S. 79-86, 2009. [in Russian]
T. Medvedovskaya, E. Strelnikova, K. Medvedyeva, “ Free Hydroelastic Vibrations of Hydroturbine Head Covers ” . J. Eng. and Advanced Research Technology (IJEART),Vol. 1, No 1, P. 45–50, 2015. DOI 10.13140/RG.2.1.3527.4961.
Gnitko V., Naumenko V., Rozova L., Strelnikova E. “Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles”. Journal of Basic and Applied Research International, 17(1), pp. 75-87, 2016.
Liang, C. C., Liao, C. C., Tai, Y. S. and Lai, W. H., 2001, The Free Vibration Analysis of Submerged Cantilever Plates, Ocean Engineering, Vol. 28, pp. 1225-1245.
Rezvani, S. S., Fazeli, H., Kiasat, M. S., and Haji-Hashemi, G., “Effects of Added Mass Parameter on Fluid-Structure Natural Frequencies by using Analytical, Numerical and Experimental Methods”. Amirkabir Journal of Science and Research in Mechanical Engineering (ASJR-ME), Vol. 47, No. 2, pp. 61-70, (2015).
Abdulkareem Abdulrazzaq Alhumdany, Muhannad Al-Waily, Mohammed Hussein Kadhim, “Theoretical analysis of fundamental natural frequency with different boundary conditions of isotropic hyper composite plate”. International Journal of Energy and Environment (IJEE), Volume 7, Issue 3, pp.229-240, 2016.
Yadykin, Y., Tenetov, V. and Levin, D., “ The Added Mass of a Flexible Plate Oscillating in a Fluid”. Journal of Fluids and Structures, Vol. 17, pp. 115-123,2003.
Rezvani, S. S., Fazeli, H., Kiasat, M. S., and Haji-Hashemi, G., “Effects of Added Mass Parameter on Fluid-Structure Natural Frequencies by using Analytical, Numerical and Experimental Methods”. Journal of Science and Research in Mechanical Engineering (ASJR-ME), Vol. 47, No. 2, pp. 61-70, (2015).
Khorshidi K., “Effect of Hydrostatic Pressure on Vibrating Rectangular Plates Coupled with Fluid ”. Scientica Iranica Transaction of Civil Engineering, Vol. 17, No. 6, pp. 415-429, (2010).
Kerboua Y, Lakis A A, Thomas M, Marcouiller L., “Vibration analysis of rectangular plates coupled with fluid ”. Applied Mathematical Modelling, 32(12) pp 2570-2586, 2008.
Kerboua, Y., and Lakis, A. A., “Dynamic Belavior of Plate Subjected to Flowing Fluid.” WSEAS, Transaction of Fluid Mechanics, Vol. 3, No. 2, pp. 101-115, (2008).
Chang, T. P., and Liu, M. F., “On the Natural Frequency of a Rectangular Isotropic Plate in Contact with Fluid.” Journal of Sound and Vibration, Vol. 236, No. 1, pp. 547-553, (2000).
Mogilevich L I, Popov V S and Popova A. A., “Interaction dynamics of pulsating viscous liquid with the walls of the conduit on an elastic foundation.” Journal of Machinery Manufacture and Reliability, 46(1) pp 12-19, 2017.
Chapman C J, Sorokin S. V., ”The forced vibration of an elastic plate under significant fluid loading”. Journal of Sound and Vibration, 281(3), pp 719-741, 2005.
O.V. Kendzera, “Sejsmichna nebezpeka i sejsmichnij zahist v Ukrayini”. Ukrayinskij geografichnij zhurnal, No 3, S. 9-15, 2015. [in Ukrainian]
Strelnikova E.A., Gipersingulyarnye integralnye uravneniya v dvumernyh kraevyh zadachah dlya uravneniya Laplasa i uravnenij Lame. Dop. NAN Ukrayini, №3. S. 27-31, 2001. [in Russian]
Birger I.A., Shor B.F., Iosilevich G.B. Raschet na prochnost detalej mashin. M.: Mashinostroenie, 1993, 640 s. [in Russian]
R. P. Moskalenko, R. G. Palchikov, O. O. Strelnikova, “Metod gipersingulyarnih integralnih rivnyan v zadachah vilnih ta vimushenih kolivan lopatej gidroturbin pri vzayemodiyi z ridinoyu.” Visnik Nacionalnogo tehnichnogo universitetu "HPI". Ser.: Matematichne modelyuvannya v tehnici ta tehnologiyah, Harkiv : NTU "HPI", № 8 (1333). S. 144-149, 2019. [in Ukrainian]
Krutchenko D.V., Strelnikova E.A., Shuvalova Y.S. Discrete Singularities Method in Problems of Seismic and Impulse Impacts on Reservoirs. Bulletin of V. Karazin Kharkiv National University Series «Mathematical Modelling. Information Technology. Automated Control Systems», T. 35, № 1, C. 31-37, 2017.
Strelnikova E., Kriutchenko D., Gnitko V., “Liquid Vibrations in Cylindrical Quarter Tank Subjected to Harmonic, Impulse and Seismic Lateral Excitations”. Journal of Mathematics and Statistical Science, V. 5, pp.31-41, 2019.
Oborudovanie atomnyh energeticheskih ustanovok. Raschet na prochnost pri sejsmicheskom vozdejstvii. RTM 108.020.37-81. [in Russian]
Еселева Е.В, Гнитько В.И., Стрельникова Е.А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Проблемы машиностроения. 2006. №1. С.105-118.
Gnitko, V., Naumemko, Y., Strelnikova E. Low frequency sloshing analysis of cylindrical containers with flat and conical baffles. International Journal of Applied Mechanics and Engineering. 22 (4). 2017. pp. 867-881.
Ганчин Е.В., Ржевская И.Е., Стрельникова Е.А. Исследование динамических характеристик лопастей рабочих колес поворотно-лопастных гидротурбин при взаимодействии с жидкостью. Вісник Харківського національного університету. 2009. № 847. С. 79-86.
Medvedovskaya T. Free Hydroelastic Vibrations of Hydroturbine Head Covers / T. Medvedovskaya, E. Strelnikova, K. Medvedyeva. Intern. J. Eng. and Advanced Research Technology (IJEART). 2015. Vol. 1, No 1. P. 45–50. DOI 10.13140/RG.2.1.3527.4961.
Gnitko V., Naumenko V., Rozova L., Strelnikova E. Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles. Journal of Basic and Applied Research International, 17(1). 2016. pp. 75-87.
Liang, C. C., Liao, C. C., Tai, Y. S. and Lai, W. H. The Free Vibration Analysis of Submerged Cantilever Plates, Ocean Engineering, 2001. Vol. 28, pp. 1225-1245.
L I Mogilevich, V S Popov, A A Popova and A V Christoforova. Mathematical Modeling of Hydroelastic Oscillations of the Stamp and the Plate, Resting on Pasternak Foundation IOP Conf. Series: Journal of Physics: Conf. Series 944 (2018). 012081.
Abdulkareem Abdulrazzaq Alhumdany, Muhannad Al-Waily, Mohammed Hussein Kadhim. Theoretical analysis of fundamental natural frequency with different boundary conditions of isotropic hyper composite plate. International Journal of Energy and Environment (IJEE), Volume 7. Issue 3 .2016. pp. 229-240.
Yadykin, Y., Tenetov, V. and Levin, D. The Added Mass of a Flexible Plate Oscillating in a Flui. Journal of Fluids and Structures. 2003. Vol. 17. pp. 115-123
Rezvani, S. S., Fazeli, H., Kiasat, M. S., and Haji-Hashemi, G. Effects of Added Mass Parameter on Fluid-Structure Natural Frequencies by using Analytical, Numerical and Experimental Methods. Amirkabir Journal of Science and Research in Mechanical Engineering (ASJR-ME). (2015).Vol. 47. No. 2. pp. 61-70.
Khorshidi, K., Effect of Hydrostatic Pressure on Vibrating Rectangular Plates Coupled with Fluid. Scientica Iranica Transaction of Civil Engineering.2010. Vol. 17. No. 6. pp. 415-429.
Kerboua Y, Lakis A A, Thomas M, Marcouiller L 2008 Vibration analysis of rectangular plates coupled with fluid Applied Mathematical Modelling 32(12). pp 2570-2586.
Kerboua, Y., and Lakis, A. A., Dynamic Belavior of Plate Subjected to Flowing Fluid, WSEAS Transaction of Fluid Mechanics. 2008. Vol. 3, No. 2. pp. 101-115.
Chang, T. P., and Liu, M. F. On the Natural Frequency of a Rectangular Isotropic Plate in Contact with Fluid. Journal of Sound and Vibration. 2000. Vol. 236. No. 1. pp. 547-553.
Mogilevich L I, Popov V S and Popova A. A. Interaction dynamics of pulsating viscous liquid with the walls of the conduit on an elastic foundation. Journal of Machinery Manufacture and Reliability. 2017. 46(1). pp 12-19.
Chapman C J, Sorokin S. V. The forced vibration of an elastic plate under significant fluid loading. Journal of Sound and Vibration. 2005 281(3) pp 719-741.
О.В. Кендзера. Сейсмічна небезпека і сейсмічний захист в Україні. Український географічний журнал. 2015. No 3. С. 9-15.
Стрельникова Е.А. Гиперсингулярные интегральные уравнения в двумерных краевых задачах для уравнения Лапласа и уравнений Ламе. Доп. НАН України. 2001. №3. С. 27-31.
Биргер И.А., Шор Б.Ф., Иосилевич Г.Б. Расчет на прочность деталей машин. М.: Машиностроение, 1993. 640 с.
Москаленко Р.П., Пальчіков Р.Г., Стрельнікова О.О. Метод гіперсингулярних інтегральних рівнянь в задачах вільних та вимушених коливань лопатей гідротурбін при взаємодії з рідиною. Вісник Національного технічного університету "ХПІ". Сер.: Математичне моделювання в техніці та технологіях. Харків : НТУ "ХПІ", 2019. № 8 (1333). С. 144-149.
Krutchenko D.V., Strelnikova Е.А., Shuvalova Y.S. Discrete Singularities Method in Problems of Seismic and Impulse Impacts on Reservoirs. Bulletin of V. Karazin Kharkiv National University Series «Mathematical Modelling. Information Technology. Automated Control Systems». 2017. T. 35. № 1. C. 31-37.
Strelnikova E., Kriutchenko D., Gnitko V. Liquid Vibrations in Cylindrical Quarter Tank Subjected to Harmonic, Impulse and Seismic Lateral Excitations. Journal of Mathematics and Statistical Science. 2019. V. 5. pp.31-41.
Оборудование атомных энергетических установок. Расчет на прочность при сейсмическом воздействии. РТМ 108.020.37-81.