Forced fluid fluctuations in cylindrical reservoirs under vertical excitation
Abstract
The shell and shell structures containing various types of liquid fillers can be exposed to intense dynamic effects during the exploitation. In order to analyze the strength of structures in these conditions, it is necessary to take into account nonlinear phenomena in fluid motion, since the application of linear equations does not provide an adequate assessment for the determination of the pressure and amplitude of the splashing. In this paper, a study of fluid fluctuations in a rigid cylindrical reservoir partially filled with the liquid under condition of vertical agitation has been carried out. The systems of differential equations that correspond to the linear and nonlinear formulation of the problem are presented. The fluid is believed to be perfect and incompressible, and its movement induced by external influences is non-vortex. Under these conditions there is a velocity potential that satisfies the Laplace equation. The conditions of non-leakage on the wetted surfaces of the shell are chosen as the boundary conditions for solving the boundary value problem. The kinematic and static conditions are specified on a free surface. The static condition consists in the equality of pressure on the liquid surface with atmospheric pressure. The pressure is determined from the Cauchy-Lagrange integral. In this case the linearization of the Cauchy-Lagrange integral leads to the linear formulation of the problem. Quadratic components are taken into account for the nonlinear formulation. To formulate the kinematic condition an additional unknown function describing the motion of the free surface is introduced. The kinematic condition is the equality of the liquid velocity described by the velocity potential and the velocity of the free surface itself. If there is a vertical agitation, an additional acceleration will be present. Therefore for the linear formulation we obtain a system of unbounded differential equations, each of which is the equation of Mathieu. This allows us to investigate the phenomena of parametric resonance. When analyzing differential equations which occur in case of a nonlinear problem, it has been found that the solutions of such equations depend essentially on the initial conditions. The phase portraits of a dynamic system with indication of resonances are presented. A numerical analysis of the differential equation corresponding to nonlinear formulation has been carried out.
Downloads
References
/References
S.F Feschenko., I.A. Lukovsky, B.I. Rabinovich, Methods for determining added fluid mass in mobile carities, Kiеv, Naukova Dumka, 2000.
Abramson H.N.; The dynamic behavior of liquids in moving containers; NASA SP-106; 1966
L. Khezzar, A. C. Seibi, A. Goharzadeh. Water Sloshing in Rectangular Tanks – An Experimental Investigation & Numerical Simulation. International Journal of Engineering (IJE), Vol. 3, No. 2, ,pp. 174-184, 2010.
O.Curadelli, D. Ambrosini, , A. Mirasso, M. Amani, Resonant frequencies in an elevated spherical container partially filled with water: FEM and measurement. Journal of Fluids and Structures 26, pp. 148–159, 2010.
Belovodskiy V.N. Sukhorukov M.Y. The harmonic balance method for the finding of bifurcation diagrams of oscillatory systems with polynomial nonlinearity. "Proceedings of the Institute of Applied Mathematics and Mechanics of NAS of Ukraine", Donetsk: IAMM of NAS of Ukraine, Vol. 26, pp. 12-20, 2013 .[in Russian]
C.Toure, Normal form theores and nonlinear normal modes, Theoretical settings and applications, Paris, pp-232-238, 2012.
R.A. Ibrahim, Liquid Sloshing Dynamics, Cambridge University Press, New York, 2005.
K. Degtyarev, V.Gnitko, V.Naumenko, E.Strelnikova, Reduced Boundary Element Method for Liquid Sloshing Analysis of Cylindrical and Conical Tanks with Baffles Int. Journal of Electronic Engineering and Computer Sciences, V1, No1 , pp. 14-27, 2016.
Ravnik J., Strelnikova E., Gnitko V., Degtyarev K., Ogorodnyk U., BEM and FEM analysis of fluid-structure interaction in a double tank, Engineering Analysis with Boundary Elements, Vol. 67, pp. 13-18, 2016
D.V.Krutchenko, Е.А.Strelnikova, Yu.S.Shuvalova. Інформаційні технології. Автоматизовані системи управління. Вісник Харківського національного університету. , Серія "Математичне моделювання. 2017, Т.35, No1, С. 31-37.
Yeseleva E., Gnitko V., Strelnikova E. A. Intrinsic oscillations of high pressure tanks when interacting with a liquid, Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, №1, P.105-118, 2006. [in Russian]
Bolotin V.V. The Dynamic Stability of Elastic Systems. Gostekhizdat, Moscow. 600 p. 1956 [in Russian]
A. D Polyanin, V. F Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition , Chapman & Hall/CRC, Boca Raton 2003.
Kidryashov N.A. The Painlevé property in the theory of differential equations. Soros Education Journal №9, pp. 121-122, 1999. [in Russian]
Feschenko S.F., Lukovsky I.A., Rabinovich B.I. Methods for determining added fluid mass in mobile carities, Kiеv, Naukova Dumka, 2000.
Abramson H.N.; The dynamic behavior of liquids in moving containers; NASA SP-106; 1966
Khezzar L., Seibi A. C., Goharzadeh A.. Water Sloshing in Rectangular Tanks – An Experimental Investigation & Numerical Simulation. International Journal of Engineering (IJE), Vol. 3, No. 2, 2010, pp. 174-184.
Curadelli, O., Ambrosini, D., Mirasso, A., Amani, M. Resonant frequencies in an elevated spherical container partially filled with water: FEM and measurement. Journal of Fluids and Structures 26, 2010, pp. 148–159.
Беловодский В.Н., Сухоруков М.Ю., Метод гармонического баланса применительно к построению бифуркационных диаграмм колебательных систем с полиномиальной нелинейностью, Труды Института прикладной математики и механики НАН Украины, Донецьк: ІПММ НАН України, 2013,Т. 26,С. 12-20..
Toure C., Normal form theories and nonlinear normal modes, Theoretical settings and applications, Paris,2012, pp-232-238,
Ibrahim R.A. Liquid Sloshing Dynamics Cambridge University Press, New York, 2005.
Degtyarev K., Gnitko V., NaumenkoV., Strelnikova E. Reduced Boundary Element Method for Liquid Sloshing Analysis of Cylindrical and Conical Tanks with Baffles Int. Journal of Electronic Engineering and Computer Sciences, V1, No1, 2016, pp. 14-27.
Ravnik J., Strelnikova E., Gnitko V., Degtyarev K., Ogorodnyk U., BEM and FEM analysis of fluid-structure interaction in a double tank, Engineering Analysis with Boundary Elements, Vol. 67, 2016: pp. 13-18
D.V . Krutchenko, Е.А. Strelnikova, Yu.S. Shuvalova, Вісник Харківського національного університету. Серія "Математичне моделювання. Інформаційні технології. Автоматизовані системи управління". 2017, Т.35, No1, С. 31-37.
Еселева Е.В., Гнитько В.И., Стрельникова Е.А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью, Институт пробл. машиностроения. 2006, №1, С.105-118.
Болотин В.В. Динамическая устойчивость упругих систем. Государственное издательство теоретико-технической литературы. Москва, 1956, 600с.
Polyanin, A. D., Zaitsev, V. F.,Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition , Chapman & Hall/CRC, Boca Raton 2003.
Кудряшов Н.А.. Свойство Пенлеве в теории дифференциальных уравнений, Соросовский образовательный журнал, №9, 1999. с. 121-122.