Одночасний докінг противірусних агентів та ціанінових барвників з білками
Анотація
Білкові наночастинки наразі розглядаються як перспективні біосумісні та біодеградовні системи для цілеспрямованої доставки фармакологічних агентів різних класів. Перед створенням наносіїв ліків такого типу доцільно здійснити оцінку спорідненості лікарських препаратів до білків та охарактеризувати можливі способи взаємодії з використанням комп’ютерних підходів, зокрема, методу молекулярного докінгу. Дане дослідження було проведене з метою оцінки можливості створення білкових наночастинок, навантажених противірусними препаратами та ціаніновими барвниками у якості візуалізуючих агентів. Компоненти досліджуваних систем були представлені ендогенними функціональними білками цитохромом с, сироватковим альбуміном, лізоцимом та інсуліном; противірусними агентами фавіпіравіром, молнупірівіром, нірматрелвіром і рітонавіром; моно- та гептаметиновими ціаніновими барвниками. З використанням методу одночасного молекулярного докінгу багатьох лігандів було продемонстровано, що: i) лікарські препарати та барвники займають різні центри зв’язування на білковій молекулі; ii) гептаметини AK7-5 та AK7-6 мають найвищу спорідненість до білків; iii) серед досліджених систем найміцніші комплекси утворюються між гептаметиновими барвниками та сироватковим альбуміном. В цілому, отримані результати свідчать про те, що наночастинки на основі альбуміну, функціоналізовані гептаметиновими ціаніновими барвниками, можуть бути застосовані для таргетної доставки досліджуваних противірусних агентів.
Завантаження
Посилання
A. Sultana, M. Zare, V. Thomas, T.S. Kumar, S. Ramakrishna, Med. Drug Discov. 15, 100134 (2022). https://doi.org/10.1016/j.medidd.2022.100134
T. Fazal, B.N. Murtaza, M. Shah, S. Iqbal, M. Rehman, F. Jaberf, A.A. Dera, et al., RSC Adv. 13, 23087-23121 (2023). https://doi.org/10.1039/D3RA03369D
J.A. Finbloom, C. Huynh, X. Huang, and T.A. Desai, Nature Reviews Bioengineering, 1, 139–152 (2023). https://doi.org/10.1038/s44222-022-00010-8
E. Kianfar, J. Nanobiotechnol. 19, 159 (2021). https://doi.org/10.1186/s12951-021-00896-3
A.L. Martínez-López, C. Pangua, C. Reboredo, R. Campión, J. Morales-Gracia, and J.M. Irache, Int. J. Pharm. 581, 119289 (2020). https://doi.org/10.1016/j.ijpharm.2020.119289
A. Jain, S.K. Singh, S.K. Arya, S.C. Kundu, and S. Kapoor, ACS Biomater. Sci. Eng. 4, 3939–3961 (2018). https://doi.org/10.1021/acsbiomaterials.8b01098
E. Miele, G.P. Spinelli, E. Miele, F. Tomao, S. Tomao, Int. J. Nanomedicine 4, 99–105 (2009). https://doi.org/10.2147/ijn.s3061
J.A. Carvalho, A.S. Abreu, V.T. Ferreira, E.P. Gonçalves, A.C. Tedesco, J.G. Pinto, J. Ferreira-Strixino, et al., J. Biomater. Sci. Polym. Ed. 29, 1287–301 (2018). https://doi.org/10.1080/09205063.2018.1456027
S. Hong, D.W. Choi, H.N. Kim, C.G. Park, W. Lee, and H.H. Park, Pharmaceutics, 12, 604 (2020). https://doi.org/10.3390/pharmaceutics12070604
V.M. Trusova, O.A. Zhytniakivska, U.K. Tarabara, K.A. Vus, and G.P. Gorbenko, J. Pharm. Biomed. Anal. 233, 115448 (2023). https://doi.org/10.1016/j.jpba.2023.115448
P. Csizmadia, in: Proceedings of ECSOC-3, the third international electronic conference on synthetic organic chemistry, (1999), pp. 367-369. https://doi.org/10.3390/ECSOC-3-01775
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17
E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng, T. Ferrin, J. Comput. Chem. 25, 1605–1612(2004). https://doi.org/10.1002/jcc.20084
D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, and H.J. Wolfson, Nucl. Acids. Res. 33, W363 (2005). https://doi.org/10.1093/nar/gki481
M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, and M. Schroeder, Nucl. Acids. Res. 49, W530 W534 (2021). https://doi.org/10.1093/nar/gkab294
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin, J. Comput. Chem. 25, 1605 (2004). https://doi.org/10.1002/jcc.20084
Авторське право (c) 2023 Ольга Житняківська, Уляна Тарабара, Катерина Вус, Валерія Трусова, Галина Горбенко
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).