Molecular Docking Study Of Protein-Functionalized Carbon Nanomaterials For Heavy Metal Detection And Removal

  • Olga Zhytniakivska Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University,Kharkiv, Ukraine https://orcid.org/0000-0002-2068-5823
  • Uliana Tarabara Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University,Kharkiv, Ukraine https://orcid.org/0000-0002-7677-0779
  • Kateryna Vus Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University,Kharkiv, Ukraine https://orcid.org/0000-0003-4738-4016
  • Valeriya Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University,Kharkiv, Ukraine https://orcid.org/0000-0002-7087-071X
  • Galyna Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University,Kharkiv, Ukraine https://orcid.org/0000-0002-0954-5053
Keywords: Carbon-based nanomaterials, Heavy metals, β-lactoglobulin, v

Abstract

Carbon nanomaterials (CNMs) have emerged as highly effective agents for the removal of heavy metals from contaminated water and environments, owing to their unique structural and chemical properties. However, the hydrophobic nature of CNMs and their tendency to aggregate in most solvents present significant challenges to their practical application. Functionalizing carbon-based nanomaterials with proteins offers a promising solution to these issues, potentially leading to systems with unprecedented performance. Before fabricating protein-CNM systems for heavy metal detection and removal, it is crucial to evaluate the metal-binding affinity and potential interaction modes using computational approaches. In this study, a molecular docking technique was employed to investigate the interactions among heavy metal salts (AsO₄, Cd(NO₃)₂, Fe(NO₃)₃, NiSO₄, PbSO₄, PtCl₄), carbon-based nanomaterials (fullerenes C₂₄ and C₆₀, and single-walled carbon nanotubes), and β-lactoglobulin. The docking results revealed that: 1) the size, shape, and surface properties of carbon-based materials significantly influence the ability of β-lactoglobulin-CNM complexes to interact with different heavy metals; 2) different heavy metal salts exhibit distinct preferences for the various nanosystems; 3) hydrogen bonding and hydrophobic interactions play a significant role in the complexation of heavy metal salts with β-lactoglobulin-carbon-based materials.

Downloads

Download data is not yet available.

References

P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, and D.J. Sutton. Exp. Suppl. 101, 133 (2012). https://doi.org/10.1007/978-3-7643-8340-4_6

M. Balali-Mood, K. Naseri, Z. Tahergorabi, M. Reza Khazdair, and M. Sadeghi, Front Pharmacol. 12, 643972 (2021). https://doi.org/10.3389/fphar.2021.643972

M. Cerna. Environ Monit Assess. 34, 151 (1995). https://doi.org/10.1007/BF00546029

A. Da̧browski, Z. Hubicki, P. Podkościelny, and E. Robens, Chemosphere 56, 91 (2004). https://doi.org/10.1016/j.chemosphere.2004.03.006

S.A. Cavaco, S. Fernandes, M. Quina, and L.M. Ferreira. J. Hazard. Mater. 144, 634 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.087

N.A.A. Qasem, R.H. Mohammed, and D.U. Lawal, npj Clean Water, 4, 36 (2021). https://doi.org/10.1038/s41545-021-00127-0J.-J

J.-J. Kim, Y.-S. Kim, and V. Kumar, J. Trace Elem. Med. Biol. 54, 226 (2019). https://doi.org/10.1016/j.jtemb.2019.05.003

J. Huang, J. et al., Colloids Surf. A Physicochem. Eng. Asp. 520, 361 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.001

N. Kongsricharoern, and C. Polprasert, Water Sci. Technol. 31, 109 (1995). https://doi.org/10.2166/wst.1995.0350

M.T. Alvarez, C. Crespo, and B. Mattiasson, Chemosphere, 66, 1677 (2007). https://doi.org/10.1016/j.chemosphere.2006.07.065

Q. Chen, Z. Luo, C. Hills, G. Xue, and M. Tyrer, Water Res. 43, 2605 (2009). https://doi.org/10.5539/ep.v1n1p38

R. Janani, G. Baskar, K. Sivakumar, V. Sunita, et al., Environmental Research, 203, 111815 (2022). https://doi.org/10.1016/j.envres.2021.111815

Z. Raji, A. Karim, A. Karam, and S. Khalloufi, Waste, 1, 775 (2023). https://doi.org/10.3390/waste1030046R

V.J. Inglezakis, M.A. Stylianou, D. Gkantzou, and M.D. Loizidou, Desalination, 210, 248 (2007). https://doi.org/10.1016/j.desal.2006.05.04

R. Baby, B. Saifullah, and M.Z. Hussein, Nanoscale Res. Lett. 14, 341 (2019). https://doi.org/10.1186/s11671-019-3167-8

C. Lu, H. Chiu, and C. Liu, Ind. Eng. Chem. Res. 45, 2850 (2006). https://doi.org/10.1021/ie051206h

G. Rao, C. Lu, and F. Su, Sep. Purif. Technol. 58, 224 (2008). https://doi.org/10.1016/j.seppur.2006.12.006

M. Taghavi, M.A. Zazouli, Z. Yousefi, et al., Environ. Monit. Asses. 187, 682 (2015). https://doi.org/10.1007/s10661-015-4911-x

K. Anitha, S. Namsani, and J.K. Singh. J. Phys. Chem. A. 119, 8349 (2015). https://doi.org/10.1021/acs.jpca.5b03352

T.A. Tabish, F.A. Memon, D.E. Gomez, et al., Sci. Rep. 8, 1817 (2018). https://doi.org/10.1038/s41598-018-19978-8

T. Guo, C. Bulin, B. Li, et al., Adsorption Science & Technology, 36(3-4), 1031 (2018). https://doi.org/10.1177/0263617417744402

C.Z. Zhang, B. Chen, Y. Bai, and J. Xie, Separation Science and Technology, 53(18), 2896 (2018). https://doi.org/10.1080/01496395.2018.1497655

D. Vilela, J. Parmar, Y. Zeng, Y. Zhao, and S. Sánchez, Nano Lett. 16(4), 2860 (2016). https://doi.org/10.1021/acs.nanolett.6b00768

X. Yang, T. Zhou, B. Ren, A. Hursthouse, and Y. Zhang. Sci. Rep. 16, 10717 (2018). https://doi.org/10.1038/s41598-018-29133-y

O.V. Alekseeva, N.A Bagrovskaya, and A.V. Noskov, Prot. Met. Phys. Chem. Surf. 52, 443 (2016). https://doi.org/10.1134/S2070205116030035.

E. Ciotta, P. Prosposito, D. Moscone, N. Collozza, and R. Pizzoferrato, AIP Conf. Proc. 2145, 020008 (2019). https://doi.org/10.1063/1.5123569

L. Chuanzhou, X. Haijun, H. Ziqi, Z. Xu, and H. Jun. Environmental Pollution, 235, 330 (2018). https://doi.org/10.1016/j.envpol.2017.12.062

P. Csizmadia, in: Proceedings of ECSOC-3, the third international electronic conference on synthetic organic chemistry, (Budapest, 1999). pp. 367-369, https://doi.org/10.3390/ECSOC-3-01775

M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17

M. Adasme, K. Linnemann, S. Bolz, F. Kaiser, et al., Nucleic Acids Research, 49, W530 (2021). https://doi.org/10.1093/nar/gkab294

X. Huang, R. Li, L. Zeng, X. Li, Z. Xi, K. Wang, and Y. Li, Carbon, 161, 350 (2020). https://doi.org/10.1016/j.carbon.2020.01.069

N. Kang, J. Hua, L. Gao, B. Zhang, J. Pang, Materials, 14, 608 (2021). https://doi.org/10.3390/ma14030608

M. Peydayesh, S. Bolisetty, T. Mohammadi, and R. Mezzenga, Langmuir. 35, 4161 (2019). https://doi.org/10.1021/acs.langmuir.8b04234

H. Benyamini, A. Shulman-peleg, H.J. Wolfson, L. Fadeev, M. Gozin. Bioconjugate Chem, 17, 378-386 (2006). https://doi.org/10.1021/bc050299g

S. Marchesan, and M. Prato, Chem. Commun. 51, 4347 (2015). https://doi.org/10.1039/C4CC09173F

F.D. Leo, A. Magistrato, and D. Bonifazi, Chem. Soc. Rev. 44, 6916 (2015). https://doi.org/10.1039/C5CS00190K

F. Karchemsky, E. Drug, E. Mashiach-Farkash, L. Fadeev, H.J. Wolfson, M. Gozin, and O. Regev, Colloids and Surfaces B: Biointerfaces, 112, 16 (2013). https://doi.org/10.1016/j.colsurfb.2013.07.018

C. Ge, J. Du, L. Zhao, and C. Chen, PNAS, 108(41), 16968 (2011). https://doi.org/10.1073/pnas.110527010

C. Duan, T. ma, J. Wang, and Y. Zhou, JWPE, 37, 101339, (2020). https://doi.org/10.1016/j.jwpe.2020.101339

X. Yang, Y. Wan, Y. Zheng, F. He, Z. Yu, J. Huang, H. Wang, et al., Chem. Eng. J. 366 608 (2019). https://doi.org/10.1016/j.cej.2019.02.119

A.H. Fahmi, A.W. Samsuri, H. Jol, and D. Singh, RSC Adv. 8, 38270 (2018). https://doi.org/10.1039/c8ra06867d

K.C. Lai, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, and S. Gan, J. Environ. Sci. 79, 179 (2019). https://doi.org/10.1016/j.jes.2018.11.023

W. Zhan, L. Gao, X. Fu, S.H. Siyal, G. Sui, and X. Yang, Appl. Surf. Sci. 467–468, 1122 (2019). https://doi.org/10.1016/j.apsusc.2018.10.248

Y. Deng, S. Huang, D.A. Laird, X. Wang, and Z. Meng, 218, 308 (2019). https://doi.org/10.1016/j. chemosphere.2018.11.081

D. Shalev. Int. J. Mol. Sci. 23, 15957 (2022). https://doi.org/10.3390/ijms232415957

Z. Yang, F, Yang, J.L. Liu, H.T. Wum H. Yang, et al., Sci Total Environ. 809, 151099 (2022). https://doi.org/10.1016/j.scitotenv.2021.151099

K.B. Handing, E. Niedzialkowska, I.G. Shabalin, M.L. Kuhn, H. Zheng, and W. Minor. Nat Protoc. 13, 1062 (2018). https://doi.org/10.1038/nprot.2018.018

J. Zang, C. Li, K. Zhou, H. Dong, B. Chen, F. Wang, and G. Zhao, Anal. Chem. 88, 10275 (2016). https://doi.org/10.1021/acs.analchem.6b03011

Y.F. Lin, C.W. Cheng, C.S. Shin, J.K. Hwang, C.S. Yu, C.H. and Lu, J. Chem. Inf. Model 56, 2287 (2016). https://doi.org/10.1021/acs.jcim.6b00407

M.P. Chantada-Varquez, A. Moreda-Pineiro, M.C. Barciels-Alonso, and P. Bermejo-Barrera, Appl. Spectr. Rev. 52, 145 (2017). https://doi.org/10.1080/05704928.2016.1213736.

R. Pearson, J. Chem. Educ. 45, 981 (1968). https://doi.org/10.1021/ed045p581

Published
2024-09-02
Cited
How to Cite
Zhytniakivska, O., Tarabara, U., Vus, K., Trusova, V., & Gorbenko, G. (2024). Molecular Docking Study Of Protein-Functionalized Carbon Nanomaterials For Heavy Metal Detection And Removal. East European Journal of Physics, (3), 484-490. https://doi.org/10.26565/2312-4334-2024-3-59