Molecular Dynamics Study of The Lysozyme-Based Drug Delivery Nanosystems Loaded with Antiviral Drugs and Cyanine Dyes
Abstract
Protein-based drug nanocarriers are increasingly recognized as promising candidates for effective drug delivery, owing to a multitude of beneficial advantages over synthetic materials including low cytotoxicity, biocompatibility, biodegradability, abundance, renewability, and high drug loading capacity mediated by diverse functional groups and interactions. In the present study the molecular dynamics simulation was employed to explore the stability of lysozyme-based drug delivery nanosystems functionalized by the antiviral drugs (favipiravir, molnupiravir, nirmatrelvir and ritonavir) and cyanine dyes (AK7-5, AK5-6, AK3-11). A series of 5 ns or 100 ns MD simulations for the top-scored docked drug-dye-protein complexes, obtained using the PatchDock server was performed at 310 K with GROMACS software using the CHARMM General Force Field. The MD results have been analyzed in terms of the parameters, such as the backbone root mean-square deviation, gyration radius, solvent accessible surface area, the root means square fluctuations. The analysis of calculated parameters for the studied systems enabled us to improve the previously acquired molecular docking data. Taken together, the results obtained indicate that Lz-F-AK3-11, Lz-R-AK75, Lz-R-AK56, Lz-N-AK75, Lz-N-AK3-11, and Lz-M-AK75 systems exhibit the highest stability among the examined dye-drug-protein systems and represent potential candidates for the targeted delivery of the explored antiviral agents.
Downloads
References
A.L. Martínez-López, C. Pangua, C. Reboredo, R. Campión, J. Morales-Gracia, and J.M. Irache, Int. J. Pharm. 581, 119289 (2020). https://doi.org/10.1016/j.ijpharm.2020.119289
Y. Wang, H. Igbal, U. U.-Rehman, L. Zhai, Z. Yuan, A. Razzaq, M. Lv, et al., J. Drug Deliv. Sci. Technol. 79, 104072 (2023). https://doi.org/10.1016/j.jddst.2022.104072.
C. Wen, J. Zhang, H. Zhang, Y. Duan, Foods. 11, 1701 (2022). https://doi.org/10.3390/foods11121701.
L. Xu, S.-B. Wang, C. Xu, D. Han, X.-H. Ren, X.-Z. Zhang, S.-X. Cheng, ACS Appl. Mater. Interfaces. 11, 38385 (2019). https://doi.org/10.1021/acsami.9b11263.
E. Kianfar, J. Nanobiotechnol. 19, 159 (2021). https://doi.org/10.1186/s12951-021-00896-3
A.O. Elzoghby, W.M. Samy, N.A. Elgindy, Journal of Controlled Release 161, 38 (2012). https://doi.org/10.1016/j.jconrel.2012.04.036
S. Lee, T.C. Pham, C. Bae, Y. Choi, Y.K. Kim, J. Yoon, Coord. Chem. Rev. 412, 213258 (2020). https://doi.org/10.1016/j.ccr.2020.213258.
S. Fuchs, C. Coester, J. Drug. Deliv. Sci. Technol. 20, 331 (2010). https://doi.org/10.1016/S1773-2247(10)50056-X.
S. Ding, N. Zhang, Z. Lye, W. Zhu, Y.C. Chang, et al., MaterialsToday. 43, 166 (2021). https://doi.org/10.1016/j.mattod.2020.11.015
S. Mollazadeh, A. Sahebkar, M. Shahlaei, S. Moradi. J. Mol. Liq. 332, 115823 (2021). https://doi.org/10.1016/j.molliq.2021.115823
H. Guterres, W. Im. J. Chem. Inf. Model. 60, 2189 (2020). https://doi.org/10.1021/acs.jcim.0c00057.
J. Mortier, C. Rakers, M. Bermudez, M. S. Murgueitio, S.Riniker, G. Wolber, Drug Discovery Today, 20, 686 (2015). https://doi.org/10.1016/j.drudis.2015.01.003
S. Gu, C. Shen, J. Yu, H. Zhao, H. Liu, L. Liu, et al., Briefings in Bioinformatics, 24, bbad008 (2023). https://doi.org/10.1093/bib/bbad008
Z. Chen, X. Wang, X. Chen, J. Huang, C. Wang, J. Wang, Z. Wang, Comput Struct Biotechnol J. 21, 2909 (2023). https://doi.org/10.1016/j.csbj.2023.04.027
O. Zhytniakivska, U. Tarabara, K. Vus, V. Trusova, G. Gorbenko, East Eur. J. Phys. 4, 318 (2023), https://doi.org/10.26565/2312-4334-2023-4-42
O. Zhytniakivska, U. Tarabara, K. Vus, V. Trusova, G. Gorbenko, East Eur. J. Phys. 3, 585 (2023), https://doi.org/10.26565/2312-4334-2023-3-69
J. Lee, S.-H. Kim, Acta Cryst. D65, 399-402 (2009), https://doi.org/10.1107/S090744490900451X
S. Jo, T. Kim, V. G. Iyer, W. Im. J. Comp. Chem. 29, 1859 (2008), https://doi.org/10.1002/jcc.20945
E. Vanquelef, S. Simon, G. Marquant, E. Garcia, G. Klimerak, J.C. Delepine, P. Cieplak, and F.Y. Dupradeau, Nucleic Acids Res. 39, W511 (2011), https://doi.org/10.1093/nar/gkr288
C. Paissoni, D. Spiliotopoulos, G. Musco, and A. Spitaleri, Computer Physics Communications. 186, 105 (2015), https://doi.org/10.1016/j.cpc.2014.09.010
I. Massova, and P.A. Kollman, J. Am. Chem. Soc. 121, 8133 (1999), https://doi.org/10.1021/ja990935j
H.X. Cai, P. Yao, Nanoscale, 5, 2892 (2013). https://doi.org/10.1039/C3NR00178D
M. Haas, A.C.A. Kluppel, E.S. Wartna, F. Moolenaar, D.K.F. Meijer, P.E. deJong, D. deZeeuw, Kidney Int. 52, 1693 (1997). https://doi.org/10.1038/ki.1997.504
C. Mecitoglu, A. Yemenicioglu, A. Arslanoglu, Z.S. Elmaci, F. Korel, A.E. Cetin, Food Res. Int. 39, 12 (2006).
S. Lee-Huang, V. Maiorov, P.L. Huang, A. Ng, H.C. Lee, Y.-T. Chang, N. Kallenbach, P.L. Huang, H.-C. Chen, Biochemistry, 44, 4648 (2005). https://doi.org/10.1021/bi0477081
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).