Флуоресцентне дослідження взаємодії між амілоїдними фібрилами інсуліну та білками
Анотація
Самоорганізація білків та пептидів в амілоїдні фібрили є предметом інтенсивних досліджень, оскільки встановлено зв’язок цього процесу з численними захворюваннями людини. Незважаючи на значний прогрес у розумінні цитотоксичності амілоїдів, роль клітинних компонентів, зокрема білків, у цитотоксичній дії амілоїдних агрегатів досі повністю не з’ясована. Дана робота спрямована на вивчення взаємодії між амілоїдними фібрилами інсуліну та деякими білками, які відрізняються за своєю структурою та фізико-хімічними властивостями. З цією метою, було досліджено флуоресцентні спектральні властивості амілоїд-чутливого фосфонієвого барвника TDV у фібрилах інсуліну (InsF) та їх сумішах із нативним сироватковим альбуміном (SA), лізоцимом (Lz) та інсуліном (Ins ), частково розгорнутими при низькому рН. Виявилось, що зв’язування TDV з амілоїдними фібрилами інсуліну супроводжується значним зростанням інтенсивності флуоресценції. У системі (InsF + TDV) спектри флуоресценції зонду можна розкласти на три спектральні компоненти з максимумами на довжинах хвиль~ 572 нм, 608 нм і 649 нм. Додавання SA, Lz або Ins до суміші (InsF + TDV) призводило до зміни інтенсивності флуоресценції, положення максимуму флуоресценції та відносного внеску першої та третьої спектральних компонентів у загальний спектр. Для отримання додаткової інформації щодо взаємодії між амілоїдними фібрилами інсуліну та білками досліджено Фьорстерівський резонансний перенос енергії між TDV у якості донора, і сквараїнового барвника SQ1 як акцептора. Встановлено, що SA не змінює ефективність переносу енергії порівняно з контрольною системою (InsF + хромофори), тоді як додавання Lz та Ins призвело до зниження ефективності. Зміни флуоресцентного відгуку TDV в системах білок-фібрили можна пояснити перерозподілом молекул зонду між сайтами зв’язування, розташованими на InsF, нефібрилізованих Ins, SA або Lz та інтерфейсі білок-білок.
Завантаження
Посилання
R. Gallardo, N.A Ranson, S.E Radford, Curr. Opin. Struct. Biol. 60, 7-16 (2020). https://doi.org/10.1016/j.sbi.2019.09.001.
V. Martorana, S. Raccosta, D. Giacomazza, L. A. Ditta, R. Noto, P. L. S. Biagio, M. Manno, Biophys. Chem. 253, 106231 (2019). https://doi.org/10.1016/j.bpc.2019.106231.
C.M. Dobson, Cold Spring Harb. Perspect. Biol. 9, a023648 (2017). https://doi.org/10.1101/cshperspect.a023648.
P. C. Ke, R. Zhou, L. C. Serpell, R. Riek, T. P. J. Knowles, H. A. Lashuel, E. Gazit, I. W. Hamley, T. P. Davis, M. Fӓndrich, D. E. Otzen, M. R. Chapman, C. M. Dobson, D. S. Eisenberg, R. Mezzenga, Chem. Soc. Rev. 49, 5473 5509 (2020). https://doi.org/10.1039/C9CS00199A.
O.S. Makin, L.C. Serpell, FEBS J. 272, 5950-5961 (2005). https://doi.org/10.1111/j.1742-4658.2005.05025.x.
R. Nelson, D. Eisenberg, Curr. Opin. Struct. Biol. 16, 260-265 (2006). https://doi.org/10.1016/j.sbi.2006.03.007.
Z. Wang, S. Kang, S. Cao, M. Krecker, V. Tsukruk, S. Singamaneni, MRS Bulletin 45, 1017-1026 (2020). https://doi.org/10.1557/mrs.2020.302.
T.P.J. Knowles, R. Mezzenga, Adv. Mater. 28, 6546-6561 (2016). https://doi.org/10.1002/adma.201505961.
M. Stefani, Biochim. Biophys. Acta, 1739, 5-25 (2004). https://doi.org/10.1016/j.bbadis.2004.08.004.
F. Chiti, C. M. Dobson, Annu. Rev. Biochem., 75, 333-366 (2006). https://doi.org/10.1146/annurev.biochem.75.101304.123901.
M. Bucciantini, S. Rigacci and M. Stefani, J. Phys. Chem. Lett., 5, 517-527 (2014). https://doi.org/10.1021/jz4024354.
S. M. Butterfield and H. A. Lashuel, Angew. Chem., Int. Ed.,2010, 49, 5628-5654. https://doi.org/10.1002/anie.200906670.
A. A. Meratan, A. Ghasemi and M. Nemat-Gorgani, J. Mol.Biol., 409, 826-838 (2011). https://doi.org/10.1016/j.jmb.2011.04.045.
B. Huang, J. He, J. Ren, X. Y. Yan and C. M. Zeng, Biochemistry, 48, 5794-5800 (2009). https://doi.org/10.1021/bi900219c.
B. Caughey, P. T. Lansbury, Annu. Rev. Neurosci., 6, 267-298 (2003). https://doi.org/10.1146/annurev.neuro.26.010302.081142.
E. Sparr, M. F. M. Engel, D. V. Sakharov, M. Sprong, J. Jacobs, B. de Kruijf, J. W. M. Hoppener, J. A. Killian, FEBS Lett., 577, 117-120 (2004). https://doi.org/10.1016/j.febslet.2004.09.075.
M. F. Engel, L. Khemtemourian, C. C. Kleijer, H. J. Meeldijk,J. Jacobs, A. J. Verkleij, B. de Kruijff, J. A. Killian and J. W. Ho ¨ppener, Proc. Natl. Acad. Sci. U. S. A., 105,6033-6038 (2008). https://doi.org/10.1073/pnas.0708354105.
A. L. Gharibyan, V. Zamotin, K. Yanamandra, O. S.Moskaleva, B. A. Margulis, I. A. Kostanyan and L. A.Morozova-Roche, J. Mol. Biol., 365, 1337-1349 (2007). https://doi.org/10.1016/j.jmb.2006.10.101.
J.F. Brandts, L.J. Kaplan, Biochemistry 12, 2011-2024 (1973). https://doi.org/10.1021/bi00734a027.
M. Groenning, J. Chem. Biol. 3, 1-18 (2010). https://doi.org/10.1007/s12154-009-0027-5.
V.M. Ioffe, G.P. Gorbenko, T. Deligeorgiev, N. Gadjev, A. Vasilev, Biophys. Chem. 128, 75–86 (2007). https://doi.org/10.1016/j.bpc.2007.03.007.
M. Bacalum, B. Zorila, M. Radu, Anal. Biochem. 440, 123–129 (2013). https://doi.org/10.1016/j.ab.2013.05.031.
J.R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed., (Springer, New York, 2006).
G. Gorbenko, O. Zhytniakivska, K. Vus, U. Tarabara, V. Trusova, Phys. Chem. Chem. Phys. 23, 14746-14754 (2021), https://doi.org/10.1039/D1CP01359A.
I. M. Kuznetsova, A.I. Sulatskaya, V. N. Uversky, K. K. Turoverov, Mol. Neurobiol. 45, 488-498 (2012). https://doi.org/10.1007/s12035-012-8272-y.
H. Xie, C. Guo, Front. Mol. Biosci. 7, 629520 (2021). https://doi.org/10.3389/fmolb.2020.629520.
K. Siposova, M. Kubovcikova, Z. Bednarikova, M. Koneracka, V. Zavisova, A. Antosova, P. Kopcansky, Z. Daxnerova, Z. Gazova, Nanotechology, 23, 055101 (2012). https://doi.org/10.1088/0957-4484/23/5/055101.
U. Bohme, U. Scheder, Chem. Phys. Lett., 434, 342–345 (2007). https://doi.org/10.1016/j.cplett.2006.12.068.
G. Sudlow, D. J. Birkett, D.N. Wade, Mol. Pharmacol., 12, 1052–1061 (1976).
A. Samanta, S. Jana, D. Ray, N. Guchhait, Spectrochim. Acta. A, 121, 23-34 (2014). https://doi.org/10.1016/j.saa.2013.10.049.
V. S. Jisha, K. T. Arun, M. Hariharan, D. Ramaiah, J. Phys. Chem. B, 114, 5912-5919 (2010). https://doi.org/10.1021/jp100369x.
G. Gorbenko, V. Ioffe, P. Kinnunen, Biophys J., 93, 140-153 (2007). https://doi.org/10.1529/biophysj.106.102749.
G. Gorbenko, V. Ioffe, J. Molotkovsky, P. Kinnunen, Biochim. Biophys Acta, 1778, 1213-1221 (2008). https://doi.org/10.1016/j.bbamem.2007.09.027.
G. Ghosh, L. Panicker, K.C. Barick, 118, 1-6 (2014). https://doi.org/10.1016/j.colsurfb.2014.03.026.
L. Li, W. Xu, H. Liang, L. He, S. Liu, Y. Li, B. Li, Y. Chen, 126, 459-466 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.051.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).