Recent Advances in Modeling of Perovskite Solar Cells Using SCAPS-1D: Effect of Absorber and ETM Thickness
Abstract
With the massive breakthrough recorded in the power conversion efficiency (PCE) of perovskite solar cells (PSCs) from 3.8 % to > 25 %, PSCs have attracted considerable attention in both the academia and industries. However, some challenges remain as barrier in realizing its deployment. To develop a highly efficient PSCs as well as environmentally benign device, simulation and optimization of such devices is desirable. Its impractical as well as wastage of time and money to design a solar cell without simulation works. It minimizes not only the risk, time and money rather analyzes layers’ properties and role to optimize the solar cell to best performance. Numerical modeling to describe PV thin layer devices is a convenient tool to better understand the basic factors limiting the electrical parameters of the solar cells and to increase their performance. In this review article, we focused on the recent advances in modelling and optimization of PSCs using SCAPS-1D with emphasis on absorber and electron transport medium (ETM) thickness.
Downloads
References
D. Eli, M.Y. Onimisi, S. Garba, and J. Tasiu, SN Applied Science, 2, 1769 (2020), https://doi.org/10.1007/s42452-020-03597-y
D. Eli, M.Y. Onimisi, S. Garba, P.M. Gyuk, T. Jamila, and H.P. Boduku, IOP Conference Series, Material Science and Engineering, 805, 012005 (2020), https://doi.org/10.1088/1757-899X/805/1/012005
M.U. Samuel, M.Y. Onimisi, J.A. Owolabi, D. Eli, and E.O. Mary, The Proceedings of the Nigerian Academy of Science, 13(1), 148 (2020), https://nasjournal.org.ng/index.php/pnas/article/view/320/162
J. Jin, J. Li, Q. Tai, Y. Chen, D.D. Mishra, W. Deng, J. Xin, S. Guo, B. Xiao, and X. Wang, Journal of Power Sources, 482, 228953 (2021), https://doi.org/10.1016/j.jpowsour.2020.228953
M. Minbashi, A. Ghobadi, M.H. Ehsani, H. Rezagholipour Dizaji, and N. Memarian, Solar Energy, 176, 520 (2018), http://dx.doi.org/10.1016/j.solener.2018.10.058
K. Kumari, A. Jana, A. Dey, T. Chakrabarti, and S.K. Sarkar, Optical Materials, 111, 110574 (2021), https://doi.org/10.1016/j.optmat.2020.110574
P.K. Patel, Scientific Reports, 11, 3082 (2021), https://doi.org/10.1038/s41598-021-82817-w
X. Dai, K. Xu, and F. Wei Beilstein, Journal of Nanotechnology, 11, 51 (2020), https://doi.org/10.3762/bjnano.11.5
X. Zhu, Z. Xu, S. Zuo, J. Feng, Z. Wang, X. Zhang, K. Zhao, J. Zhang, H. Liu, S Priya, S. F. Liu, and D. Yang, Energy & Environmental Science, 11, 3349 (2018), https://doi.org/10.1039/C8EE02284D
F. Di Giacomo, S. Shanmugam, H. Fledderus, B.J. Bruijnaers, W.J.H. Verhees, M.S. Dorenkamper, S.C. Veenstra, W. Qiu, R. Gehlhaar, T. Merckx, T. Aernouts, R. Andriessen, and Y. Galagan, Solar Energy Materials and Solar Cells, 181, 53 (2018), https://doi.org/10.1016/j.solmat.2017.11.010
Y. Zong, Z. Zhou, M. Chen, N.P. Padture, and Y. Zhou, Advanced Energy Materials, 8, 1800997 (2018), https://doi.org/10.1002/aenm.201800997
I.J. Ogundana, and S.Y. Foo, Journal of Solar Energy, 2017, Article ID 8549847, https://doi.org/10.1155/2017/8549847
F. Izadi, A. Ghobadi, A. Gharaati, M. Minbashi, and A. Hajjiah, Optik, 227, 166061 (2021), https://doi.org/10.1016/j.ijleo.2020.166061
C.W. Chang, Z.W. Kwang, T.Y. Hsieh, T.C. Wei, and S.Y. Lu, Electrochimica Acta, 292, 399 (2018), https://doi.org/10.1016/j.electacta.2018.09.161
M. Rai, L.H. Wong, and L. Etgar, Journal of Physical Chemistry Letters, 11(19), 8189 (2020), https://doi.org/10.1021/acs.jpclett.0c02363
A. Sławek, Z. Starowicz, and M. Lipin´ski, Materials, 14, 3295 (2021), https://doi.org/10.3390/ma14123295
A. Kumar, S.K. Ojha, N. Vyas, and A.K. Ojha, ACS Omega, 6(10), 7086 (2021), https://doi.org/10.1021/acsomega.1c00062
J. Stenberg, Master’s Thesis, Umea University, (2017).
I. Hussain, H.P. Tran, J. Jaksik, J. Moore, N. Islam, and M.J. Uddin, Emergent materials, 1, 133 (2018), https://doi.org/10.1007/s42247-018-0013-1
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of American Chemical Society, 131, 6050 (2009), https://doi.org/10.1021/ja809598r
H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, and N.G. Park, Scientific Reports, 2, 591 (2012), https://doi.org/10.1038/srep00591
Z. Song, S.C. Watthage, A.B. Phillips, M.J. Heben, Journal of Photonics for Energy, 6, 022001 (2016), https://doi.org/10.1117/1.JPE.6.022001
L. Meng, J. You, T.-F. Guo, and Y. Yang, Accounts of Chemical Research, 49(1), 155 (2016), https://doi.org/10.1021/acs.accounts.5b00404
J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, and T.C. Wen, Advanced Materials, 25, 3727 (2013), https://doi.org/10.1002/adma.201301327
L. Hu, K. Sun, M. Wang, W. Chen, B. Yang, J. Fu, Z. Xiong, X. Li, X. Tang, Z. Zang, S. Zhang, L. Sun, and M. Li, ACS Applied Materials & Interfaces, 9(50), 43902 (2017), https://doi.org/10.1021/acsami.7b14592
D. Eli, M.Y. Onimisi, S. Garba, R.U. Ugbe, J.A. Owolabi, O.O. Ige, G.J. Ibeh, and A.O. Muhammed, Journal of the Nigerian Society of Physical Sciences, 1, 72 (2019), https://doi.org/10.46481/jnsps.2019.13
E. Danladi, A. Shuaibu, M. S. Ahmad, and J. Tasiu, East European Journal of Physics, 2021(2), 135 (2021), https://doi.org/10.26565/2312-4334-2021-2-11
U. Mandadapu, S.V. Vedanayakam, and K. Thyagarajan, International Journal of Engineering Science and Invention, 2, 40 (2017).
J.A. Owolabi, M.Y. Onimisi, J.A. Ukwenya, A.B. Bature, U.R. Ushiekpan, American Journal of Physics and Applications, 8(1), 8, (2020), http://dx.doi.org/10.11648/j.ajpa.20200801.12
A.O. Muhammed, E. Danladi, H.P. Boduku, J. Tasiu, M.S. Ahmad, and N. Usman, East European Journal of Physics, 2021(2), 146 (2021), https://doi.org/10.26565/2312-4334-2021-2-12
S.S. Hussain, S. Riaz, G.A. Nowsherwan, K. Jahangir, A. Raza, M.J. Iqbal, I. Sadiq, S.M. Hussain, and S. Naseem, Journal of Renewable Energy, 2021, Article ID 6668687 (2021), https://doi.org/10.1155/2021/6668687
S.Z. Haider, H. Anwar, and M. Wang, Semiconductor Science and Technology, 33, 035001 (2018), https://orcid.org/0000-0002-0473-850X
M.M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A.L. Rogach, Y. Yao, and Z. Fan, Scientific Reports, 5, 14083 (2015), https://doi.org/10.1038/srep14083
A.A. Paraecattil, J. De Jonghe-Risse, V. Pranculis, J. Teuscher, and J.E. Moser, Journal of Physical Chemistry C, 120, 19595 (2016), https://doi.org/10.1021/acs.jpcc.6b08022
T. Ouslimane, L. Et-taya, L. Elmaimouni, and A. Benami, Heliyon, 7, e06379 (2021), https://doi.org/10.1016/j.heliyon.2021.e06379
J.P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T.J. Jacobsson, M.E. Calvo, A. Abate, M. Gratzel, H. Míguez, and A. Hagfeldt, Advanced Materials, 28, 5031 (2016), https://doi.org/10.1002/adma.201600624
P. Singh, and N.M. Ravindra, Solar Energy Materials and Solar Cells, 101, 36 (2012), https://doi.org/10.1016/j.solmat.2012.02.019
B.M. Soucase, I.G. Pradas, and K.R. Adhikari, in: Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, (49659), 445 (2016), https://doi.org/10.5772/61751
M. Kaifi, and S.K. Gupta, International Journal of Engineering Research and Technology, 12(10), 1778 (2019).
G.A. Nowsherwan, K. Jahangir, Y. Usman, M.W. Saleem, M. Khalid, Scholars Bulletin, 7(7), 171 (2021), https://doi.org/10.36348/sb.2021.v07i07.004
U.C. Obi, M.Sc. thesis, department of material science and engineering, African university of science and technology, Abuja, Nigeria (2019).
M.T. Islam, M.R. Jani, S. Rahman, K.M. Shorowordi, S.S. Nishat, D. Hodges, S. Banerjee, H. Efstathiadis, J. Carbonara, and S. Ahmed, SN Applied Sciences, 3, 504 (2021), https://doi.org/10.1007/s42452-021-04487-7
M.I. Samiul, K. Sobayel, A. Al-Kahtani, M.A. Islam, G. Muhammad, N. Amin, M. Shahiduzzaman, and M. Akhtaruzzaman, Nanomaterials, 11, 1218 (2021), https://doi.org/10.3390/nano11051218
U. Mandadapu, S.V. Vedanayakam, and K. Thyagarajan, Indian Journal of Science and Technology, 10(11), 1 (2017).
U. Mandadapu, S.V. Vedanayakam, K.K. Thyagarajan, and B.J. Babu, International Journal of Simulation and Process Modelling, 13(3), 221 (2018), https://dx.doi.org/10.1504/IJSPM.2018.093097
M.R. Ahmadian-Yazdi, F. Zabihi, M. Habibi, and M. Eslamian, Nanoscale Research Letters, 11, 408 (2016), https://doi.org/10.1186/s11671-016-1601-8
J. Barbé, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A. El Labban, M. Abulikemu et al, ACS Appl. Mater. Interfaces, 9, 11828 (2017), https://doi.org/10.1021/acsami.6b13675
K.R. Adhikari, S. Gurung, B.K. Bhattarai, and B.M. Soucase, Physica Status Solidi C, 13(1), 13 (2016), https://doi.org/10.1002/pssc.201510078
N.A. Sultana, M.O. Islam, M. Hossain, and Z.H. Mahmood, Dhaka University Journal of Science, 66(2), 109 (2018), http://dx.doi.org/10.3329/dujs.v66i2.54553
Y. Raoui, H. Ez-Zahraouy, N. Tahiri, O. El Bounagui, S. Ahmad, and S. Kazim, Solar Energy, 193, 948 (2019), https://doi.org/10.1016/j.solener.2019.10.009
A. Singla, R. Pandey, R. Sharma, J. Madan, K. Singh, V.K. Yadav, and R. Chaujar, in: 2018 IEEE Electron Devices Kolkata Conference (EDKCON), pp. 278-282 (2018).
T. Kirchartz, T. Agostinelli, M. Campoy-Quiles, W. Gong, and J. Nelson, The Journal of Physical Chemistry Letters, 3, 3470 (2012), https://doi.org/10.1021/jz301639y
I. Alam, and M.A. Ashraf, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, (2020).
S. Yasin, T. Al Zoubi, and M. Moustafa, Optik, 229, 166258 (2021), https://doi.org/10.1016/j.ijleo.2021.166258
F.A. Afak, M. Nouredine, S.A. Meftah, Solar Energy, 181, 372 (2019), https://doi.org/10.1016/j.solener.2019.02.017
M. Kumar A. Raj, A. Kumar, and A. Anshul, Materials Today Communications, 26, 101851 (2021), https://doi.org/10.1016/j.mtcomm.2020.101851
N. Singh, A. Agarwal, and M. Agarwal, AIP Conference Proceedings, 2265, 030672 (2020), https://doi.org/10.1063/5.0016929
S. Aseena, N. Abraham, and V.S. Babu, Materials Today: Proceedings, 43(6), 3432 (2021), https://doi.org/10.1016/j.matpr.2020.09.077
L. Huang, X. Sun, C. Li, R. Xu, J. Xu, Y. Du, Y. Wu, J. Ni, H. Cai, et al, Solar Energy Materials and Solar Cells, 157, 1038 (2016), https://doi.org/10.1016/j.solmat.2016.08.025
A. Hima, N. Lakhdar, B. Benhaoua, A. Saadoune, I. Kemerchou, and F. Rogti, Superlattices and Microstructures, 129, 240 (2019), https://doi.org/10.1016/j.spmi.2019.04.007
Citations
Performance Enhancement via Numerical Modeling and Optimization of FASnI3 Perovskite Solar Cell
Kanouni Lahcene, Saidi Lamir, Yousfi Abderrahim & Saidani Okba (2024) East European Journal of Physics
Crossref
First-principles investigation and photovoltaic assessment of Cs2SnZ6 (Z = Cl, Br, I) lead-free perovskites for future solar technologies
Rahman Md. Ferdous, Saiyed Abu, Hossain Md. Faruk, Marasamy Latha, Al Galib Tanvir, Rahman Mahabur & Bani-Fwaz Mutasem Z. (2025) RSC Advances
Crossref
Ray tracing analysis of CH3NH3PBI3-based perovskite solar cells: effects of various perovskite, ETL and HTL thicknesses
Rahime N. A. H., Azis A., Yusoff M. Z. M. & Yahya M. S. (2025) Journal of Optoelectronic and Biomedical Materials
Crossref
Material and Interface Innovations in Perovskite–Silicon Tandem Solar Cells for Enhanced Stability and Efficiency
Sharma Anupam, Sharma Ajay, Garg Mukesh, Kumar Narinder, Sharma Suchinder K. & Sharma Anil Kumar (2026) Journal of Electronic Materials
Crossref
Performance evaluation of all-inorganic cesium-based perovskite solar cell with BaSnO3 as ETL
Tara Ayush, Bharti Vishal, Dixit Himanshu, Sharma Susheel & Gupta Rockey (2023) Journal of Nanoparticle Research
Crossref
Triple-junction all-perovskite solar cells: a review
Zhang Jialun, He Zijie & Chen Cong (2025) Journal of Materials Chemistry A
Crossref
Recent advances and strategies for enhancing perovskite-organic tandem solar cells
Sharma Anupam, Gupta Vikas, Sharma Ajay, Sharma Suchinder K. & Sharma Anil Kumar (2025) Next Research
Crossref
Numerical analysis of photovoltaic performance in NaSnCl3 and KSnCl3 perovskite absorber layers for solar energy harvesting: SCAPS-1D study
Bouri Nabil, Geleta Tesfaye Abebe, Guji Kefyalew Wagari, Behera D. & Nouneh Khalid (2024) Materials Today Communications
Crossref
An overview of the numerical modeling, simulation, and optimization methods: toward the design of highly efficient planer perovskite solar cells
Aliaghayee Mehdi (2024) Discover Electronics
Crossref
Device Structures of Perovskite Solar Cells: A Critical Review
Deepika , Singh Arjun, Verma Upkar K. & Tonk Anu (2023) physica status solidi (a)
Crossref
Simulation of high efficiency hybrid FTO/TiO2/CH3NH3SnI3/RGO based solar cell using SCAPS-1D
Priya T. Keerthi, Deb Prasenjit & Choudhury Anwesha (2024) Optik
Crossref
Simulation of dual-absorber perovskite solar cells by SCAPS for enhanced efficiency
Vidya Dhulipala Navya Sri, Prasanna J Lakshmi, Kumar M Ravi, Kumar Atul & Santhosh Chella (2025) Engineering Research Express
Crossref
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



