Effect of Biosynthesized Silver Nanoparticles on The Optical, Structural, and Morphological Properties of TiO2 Nanocrystals

  • Jamila Tasiu Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Muhammad Y. Onimisi Department of Physics, Nigerian Defence Academy, Kaduna, Nigeria
  • Abubakar S. Yusuf Department of Physics, Federal University of Technology, Minna, Nigeria State, Nigeria https://orcid.org/0000-0001-8181-9728
  • Eli Danladi Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria https://orcid.org/0000-0001-5109-4690
  • Nicholas N. Tasie Department of Physics, Rivers State University, Port Harcourt, Rivers State, Nigeria
Keywords: AgNPs, TiO2, Nanocomposites, LSPR Effect, Photocatalyst

Abstract

The development of efficient metal doped semiconductors for Photovoltaic applications has gained a lot of research attention. In this present paper, pure and silver nanoparticles (AgNPs)-modified TiO2 nanocrystals (NCs) with different amount of AgNPs (say 50, 100, 150, 200, and 250 µL) were achieved and the effects of AgNPs on the TiO2 NCs were explored systematically. The optical, structural and morphological properties were probed using UV-visible spectrophotometer, X-ray diffraction (XRD), and scanning electron microscope (SEM). The results of the optical studies showed a characteristic peak of TiO2 and the redshifting of the peak position was observed by introducing AgNPs. The synergetic effects from AgNPs and TiO2 results to diminished band gap. The XRD result confirmed the formation of a tetragonal anatase TiO2 phase with a decrease in crystallite size with increasing AgNPs content. The SEM images show enhanced nucleation and film growth with presence of shining surface which can be seen to contribute to good photon management by enhancing light scattering. The unadulterated TiO2 and AgNPs-modified TiO2 have spherical morphology and uniform size distribution ranging from 20 to 30 nm. This study established the view that surface modification of TiO2 with AgNPs is a viable approach towards achieving an efficient light photocatalyst.

Downloads

Download data is not yet available.

References

D. Thomas, E. Danladi, M.T. Ekwu, P.M. Gyuk, M.O. Abdulmalik, and I.O. Echi, East European Journal of Physics, 4, 118 (2022). https://doi.org/10.26565/2312-4334-2022-4-11

T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, Optical Materials, 36, 207 (2013). https://doi.org/10.1016/j.optmat.2013.08.030

E. Danladi, A. Ichoja, E. D. Onoja, D. S. Adepehin, E. E. Onwoke, O. M. Ekwu, and D. O. Alfred, Materials Research Innovations, 27, 521 (2023). https://doi.org/10.1080/14328917.2023.2204585

F. Ahmed, M. B. Kanoun, C. Awada, C. Jonin, and P. F. Brevet, Crystals, 11, 1488 (2021). https://doi.org/10.3390/cryst11121488

K. Wilke, and H. Breuer, Journal of Photochemistry and Photobiology A, 121, 49 (1999). https://doi.org/10.1016/S1010-6030(98)00452-3

S. W. Verbruggen, M. Keulemans, M. Filippousi, D. Flahaut, G. V. Tendeloo, S. Lacombe, J. A. Martens, and S. Lenaerts, Applied Catalysis B: Environmental, 156–157, 116 (2014). https://doi.org/10.1016/j.apcatb.2014.03.027

H. Zhang, C. Liang, J. Liu, Z. Tian, G. Wang, and W. Cai, Langmuir, 28, 3938 (2012). https://doi.org/10.1021/la2043526

A. Subrahmanyam, K. Biju, P. Rajesh, K. J. Kumar, and M. R. Kiran, Solar Energy Materials and Solar Cells, 101, 241 (2012). https://doi.org/10.1016/j.solmat.2012.01.023

D. Gogoi, A. Namdeo, A. K. Golder, and N. R. Peela, International Journal of Hydrogen Energy, 45, 2729 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.127

P. Wang, B. Huang, Y. Dai, and M.H. Whangbo, Physical Chemistry Chemical Physics, 14, 9813 (2012). https://doi.org/10.1039/C2CP40823F

M. L. De Souza, D. P. dos Santos, and P. Corio, RSC Advances, 8, 28753 (2018). https://doi.org/10.1039/C8RA03919D

Z. V. Quiñones-Jurado, M. Waldo-Mendoza, H. M. Aguilera-Bandin, E. G. Villabona-Leal, E. Cervantes-Gonzalez, and E. Pérez, Materials Sciences and Applications, 5, 895 (2014). http://dx.doi.org/10.4236/msa.2014.512091

L. Yang, Q. Sang, J. Du, M. Yang, X. Li, Y. Shen, X. Han, X. Jiang, and B. Zhao, Physical Chemistry Chemical Physics, 20 15149 (2018). https://doi.org/10.1039/C8CP01680A

L. Zhou, J. Zhou, W. Lai, X. Yang, J. Meng, L. Su, C. Gu, T. Jiang, E. Y. B. Pun, and L. Shao, Nature Communications, 11, 1785 (2020). https://doi.org/10.1038/s41467-020-15484-6

K. Kalishwaralal, S. BarathManiKanth, S.R.K. Pandian, V. Deepak, and S. Gurunathan, Colloids Surfaces B Biointerfaces, 79, 340 (2010). https://doi.org/10.1016/j.colsurfb.2010.04.014

P. Rania, V. Kumar, P.P. Singh, A.S. Matharu, W. Zhang, K.H. Kimf, J. Singh, and M. Rawat, Environment International, 143 105924 (2020). https://doi.org/10.1016/j.envint.2020.105924

V. Katta, and R. Dubey, Materialstoday: Proceedings, 45, 794 (2021). https://doi.org/10.1016/j.matpr.2020.02.809

M.G. González‑Pedroza, A.R.T. Benítez, S.A. Navarro‑Marchal, E. Martinez-Martinez, J.A. Marchal, H. Boulaiz, and R.A. Morales-Luckie, Scientific Reports, 13, 790 (2023). https://doi.org/10.1038/s41598-022-26818-3

M. Madani, S. Hosny, D. M. Alshangiti, N. Nady, S. A. Alkhursani, H. Alkhaldi, S. A. Al-Gahtany, M. M. Ghobashy, and G. A. Gaber, Nanotechnology Reviews, 11, 731 (2022). https://doi.org/10.1515/ntrev-2022-0034

Y. Khane, K. Benouis, S. Albukhaty, G. M. Sulaiman, M. M. Abomughaid, A. Al Ali, D. Aouf, F. Fenniche, S. Khane, W. Chaibi, A. Henni, H. D. Bouras, and N. Dizge, Nanomaterials, 12, 2013 (2022). https://doi.org/10.3390/nano12122013

Y. M. Yeh, Y. S. Wang, and J. H. Li, Optics Express, 19, A80 (2011). https://doi.org/10.1364/OE.19.000A80

P. Malliga, J. Pandiaraja, N. Prithivikumaran, and K. Neyvasagam, IOSR Journal of Applied Physics, 6, 22 (2014). http://dx.doi.org/10.9790/4861-06112228

F. Arjmand, Z. Golshani, S.J. Fatemi, S. Maghsoudi, A. Naeimi, and S.M.A. Hosseini, Journal of Materials Research and Technology 18, 1922 (2022). https://doi.org/10.1016/j.jmrt.2022.03.088

E. Danladi, M.Y. Onimisi, S. Garba, P.M. Gyuk, T. Jamila, and H.P. Boduku, IOP Conference Series: Material Science and Engineering, 805, 012005 (2020). https://doi.org/10.1088/1757-899X/805/1/012005

M. Oztas, Chinese Physics Letters, 25, 4090 (2008). https://doi.org/10.1088/0256-307X/25/11/069

J. Manju, and S. M. J. Jawhar, Journal of Materials Research, 33,1534 (2018). https://doi.org/10.1557/jmr.2018.155

A. Patterson, Physical Review, 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978

Published
2024-03-05
Cited
How to Cite
Tasiu, J., Onimisi, M. Y., Yusuf, A. S., Danladi, E., & Tasie, N. N. (2024). Effect of Biosynthesized Silver Nanoparticles on The Optical, Structural, and Morphological Properties of TiO2 Nanocrystals. East European Journal of Physics, (1), 315-321. https://doi.org/10.26565/2312-4334-2024-1-28

Most read articles by the same author(s)