Effect of Silver Nanoparticles SILAR Cycle on TiO2 Nanoparticles Thin Film: Optical and Structural Study

  • Daniel Thomas Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Eli Danladi Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria https://orcid.org/0000-0001-5109-4690
  • Mary T. Ekwu Department of Physics, Airforce Institute of Technology, Kaduna, Nigeria
  • Philibus M. Gyuk Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Muhammed O. Abdulmalik Department of Physics, Confluence University of Science and Technology, Osara, Kogi State, Nigeria https://orcid.org/0000-0002-3250-7864
  • Innocent O. Echi Department of Applied Physics, Kaduna Polytechnic, Kaduna, Nigeria
Keywords: AgNPs, TiO2, Nanocomposites, LSPR Effect, SILAR

Abstract

Titanium dioxide (TiO2) has gained a lot of research interests due to its applicability in electronic materials, energy, environment, health & medicine, catalysis etc as a result of its high permittivity, refractive index, efficiency, low-cost chemical inertness, eco-friendliness, photocatalytic activity, photostability and ability of decomposing a wide variety of organic compounds. In this study, the effect of silver nanoparticles (AgNPs) deposited through Successive Ionic Layer Adsorption and Reaction (SILAR) on the optical, structural and morphological properties of TiO2 was explored systematically. The investigation was achieved via a combined effect of UV-vis spectroscopy, Scanning Electron Microscope (SEM) and X-ray Diffractometer (XRD) characterizing tools. As illustrated from the SEM micrographs, introduction of AgNPs result to enhanced nucleation and films growth with presence of shining surface which can be seen to contribute to good photon management through enhanced light scattering. The XRD results showed that, the presence of AgNPs on TiO2 results to peaks corresponding to that of the TiO2 crystallographic planes with no silver peaks detected due to its low concentration in the nanocomposite which shows that it was just homogeneously distributed on the surface of the TiO2 nanoparticles. The UV-Vis results show a red shift to higher wavelength, showing an increase in visible light absorption which can be ascribed to the strong field effect of the Localized Surface Plasmon Resonance (LSPR). There was a decrease in band gap edge with introduction of AgNPs which indicated an increase in the optical conductivity of the AgNPs modified film.

Downloads

Download data is not yet available.

References

M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Konto, P.S.M. Dunlop, J.W. Hamilton, J.A. Byrne, K. O’shea, M.H. Entezari, and D.D. Dionysiou, Applied Catalysis B: Environmental, 125, 331 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036

M.K. Seery, R. George, P. Floris, and S.C. Pillai, Journal of Photochemistry and Photobiology: A Chemistry, 189, 258 (2007). https://doi.org/10.1016/j.jphotochem.2007.02.010

S. Sontakke, C. Mohan, J. Modak, and G. Madras, Chemical Engineering Journal, 189-190, 101 (2012). https://doi.org/10.1016/j.cej.2012.02.036

M.Y. Onimisi, E. Danladi, T. Jamila, S. Garba, G.J. Ibeh, O.O. Ige, and E. Lucky, Journal of the Nigerian Association of Mathematical Physics, 10, 177 (2019). http://e.nampjournals.org/product-info.php?pid4037.html

J. Tasiu, E. Danladi, M. T. Ekwu, and L. Endas, Journal of nano and materials science research, 1, 16 (2022). http://journals.nanotechunn.com/index.php/jnmsr/article/view/1/10

E. Danladi, M. Y. Onimisi, S. Garba, and J. Tasiu, SN Applied Sciences, 2, 1769 (2020). https://doi.org/10.1007/s42452-020-03597-y

G.A. Alamu, O. Adedokun, I.T. Bello, and Y.K. Sanusi, Chemical Physics Impact, 3, 100037 (2021). https://doi.org/10.1016/j.chphi.2021.100037

H.M. Chenari, C. Seibelb, D. Hauschild, and H. Abdollahiand, Materials Research, 19(6), 1319 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0288

K. Nakata, and A. Fujishima, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 169 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

M.R. Hoffmann, S.T. Martin, W. Choi, and W.D. Bahnemann, Chemical Reviews, 95, 69 (1995). https://doi.org/10.1021/cr00033a004

G. Govindasamy, P. Murugasen, and S. Sagadevan, Materials Research, 19(2), 413 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0411

T. Daniel, P. M. Gyuk, S. Alhassan, E. Danladi, N. J. Gyuk, P. Anthony, Journal of the Nigerian Association of Mathematical Physics, 54, 179 (2020). http://e.nampjournals.org/product-info.php?pid4068.html

S. Sreeja, and B. Pesala, Scientific Reports, 10, 8240 (2020). https://doi.org/10.1038/s41598-020-65236-1

M. Jacob, H. Levanon, and P.V. Kamat, Nano letters, 3, 353 (2003). https://doi.org/10.1021/nl0340071

J.C. Colmenares, M.A. Aramedia, A. Marinas, J.M. Marinas, and F.J. Ubano, Applied Catalysis A: General, 306, 120 (2006). https://doi.org/10.1016/j.apcata.2006.03.046

F.L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, ACS Nano, 6(3), 2056 (2012). https://doi.org/10.1021/nn203661n

G. Kovacs, Z. Pap, C. Cotet, V. Cosoveanu, L. Baia, and V. Danciu, Materials, 8, 1059 (2015). https://doi.org/10.3390/ma8031059

W.J. Cho, Y. Kim, and J.K. Kim, ACS Nano 6, 249 (2012). https://doi.org/10.1021/nn2035236

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, Journal of Photochemistry and Photobiology A: 148, 303 (2002). https://doi.org/10.1016/j.cej.2003.05.004

M. Sökmen, D.W. Allen, F. Akkaş, N. Kartal, and F. Acar, Water, Air, and Soil Pollution, 132, 153 (2001). https://doi.org/10.1023/A:1012069009633

H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, and Y.C. Bae, Journal of Photochemistry and Photobiology A, 163, 37-44 (2004). https://doi.org/10.1016/S1010-6030(03)00428-3

L. Zhang, J.C. Yu, H.Y. Yip, Q. Li, K.W. Kwong, A. Xu, and P.K. Wong, Langmuir, 19, 10372 (2003). https://doi.org/10.1021/la035330m

S. Kalaiarasi, and M. Jose, Applied Physics A, 123, 512 (2017). https://doi.org/10.1007/s00339-017-1121-0

M. Sahu, B. Wu, L. Zhu, C. Jacobson, W.N. Wang, N. Jones, Y. Goyal, Y.J. Tang, and P. Biswas, Nanotechnology, 22, 415704 (2012). https://doi.org/10.1088/0957-4484/22/41/415704

K.M. Mansoob, A. Sajid, M. Ansari, A. Ikhlasul, L. Jintae, and H.C. Moo, Nanoscale, 5, 4427 (2013). https://doi.org/10.1039/C3NR00613A

C. Chambers, S.B. Stewart, B. Su, H.F. Jenkinson, J.R. Sandy, and A.J. Ireland, Dental Materials, 33, e115–e123 (2017). https://doi.org/10.1016/j.dental.2016.11.008

I.L. Ikhioya, E. Danladi, O.D. Nnanyere, and A.O. Salawu, Journal of the Nigerian Society of Physical Sciences, 4(1), 123 (2022). https://doi.org/10.46481/jnsps.2022.502

N.F. Mott, and E.A. Davis, Electronic processes in non-crystalline materials, 2nd edition, (Clarendon, Oxford, 1979).

J. Tauc, editor, Amorphous and Liquid Semiconductors, vol.159, (Plenum Press, NewYork, 1974).

Published
2022-12-06
Cited
How to Cite
Thomas, D., Danladi, E., Ekwu, M. T., Gyuk, P. M., Abdulmalik, M. O., & Echi, I. O. (2022). Effect of Silver Nanoparticles SILAR Cycle on TiO2 Nanoparticles Thin Film: Optical and Structural Study. East European Journal of Physics, (4), 118-124. https://doi.org/10.26565/2312-4334-2022-4-11