7.379 % Power Conversion Efficiency of a Numerically Simulated Solid-State Dye-Sensitized Solar Cell with Copper (I) Thiocyanate as a Hole Conductor

  • Eli Danladi Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria https://orcid.org/0000-0001-5109-4690
  • Muhammad Kashif School of Electrical Automation and Information Engineering, Tianjin University, Tianjin, China
  • Thomas Daniel Department of Physics, Alex Ekwueme Federal University, Ndufu Alike, Ebonyi State, Nigeria https://orcid.org/0000-0002-5176-9181
  • Christopher Achem Centre for Satellite Technology Development-NASRDA, Abuja, Nigeria
  • Matthew Alpha Department of Physics, Nigerian Army University, Biu, Borno State, Nigeria
  • Michael Gyan Department of Physics, University of Education, Winneba, Ghana
Keywords: 1


Sourcing for an alternative to the liquid electrolyte in dye-sensitized solar cells (DSSCs) have been the subject of interest in the photovoltaic horizon. Herein, we reported by means of simulation, the performance of dye-sensitized solar cell by replacing the liquid electrolyte with a copper (I) thiocyanate (CuSCN) hole conductor. The study was carried out using Solar Capacitance Simulation Software (SCAPS) which is based on poisson and continuity equations. The simulation was done based on an n-i-p proposed architecture of FTO/TiO2/N719/CuSCN/Pt. The result of the initial device gave a Power Conversion Efficiency (PCE), Fill Factor (FF), Short Circuit Current Density (Jsc) and Open Circuit Voltage (Voc) of 5.71 %, 78.32 %, 6.23 mAcm-2, and 1.17 V. After optimizing input parameters to obtain 1×109 cm-2 for CuSCN/N719 interface defect density, 280 K for temperature, 1.0 μm for N719 dye thickness, 0.4 μm for TiO2 thickness, Pt for metal back contact, and 0.2 μm for CuSCN thickness, the overall device performance of 7.379 % for PCE, 77.983 % for FF, 7.185 mAcm-2 for Jsc and 1.317 V for Voc were obtained. When compared with the initial device, the optimized results showed an enhanced performance of ~ 1.29 times, 1.15 times, and 1.13 times in PCE, Jsc, and Voc over the initial device. The results obtained are encouraging and the findings will serve as a baseline to researchers involved in the fabrication of novel high-performance solid-state DSSCs to realize its appealing nature for industry scalability.


Download data is not yet available.


B. O’regan, and M. Grätzel, Nature, 353, 737–740 (1991), https://doi.org/10.1038/353737a0

S. Sharma, K.K. Jain, and A. Sharma, Materials Sciences and Applications, 6(12), 1145–1155 (2015), https://doi.org/10.4236/msa.2015.612113

V.R. Gómez, F.A. Mató, D.S. Jiménez, G.S. Rodríguez, A.Z. Lara, I.M. De Los Santos, and H.Y.S. Hernández, Optical and Quantum Electronics, 52, 324 (2020), https://doi.org/10.1007/s11082-020-02437-y

A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, and H. Pettersson, Chemical Reviews, 110, 6595–6663 (2010), https://doi.org/10.1021/cr900356p

M. Gratzel, Accounts of Chemical Research, 42, 1788–1798 (2009), https://doi.org/10.1021/ar900141y

S. Yanagida, Y.H. Yu, and K. Manseki, Accounts of Chemical Research, 42, 1827–1838 (2009), https://doi.org/10.1021/ar900069p

I. Chung, B. Lee, J. He, R.P.H. Chang, and M.G. Kanatzidis, Nature, 485, 486-489 (2012), https://doi.org/10.1038/nature11067

M. Wang, N. Chamberland, L. Breau, J.E Moser, R.H. Baker, B. Marsan, S.M. Zakeeruddin, and M. Grätzel, Nature Chemistry, 2, 385–389 (2010), https://doi.org/10.1038/nchem.610

A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Science, 334, 629–634 (2011), https://doi.org/10.1126/science.1209688

K.H. Wong, K. Ananthanarayanan, S.R. Gajjela, and P. Balaya, Materials Chemistry and Physics, 125, 553-557 (2011), https://doi.org/10.1016/j.matchemphys.2010.10.017

F. Jahantigh, and M.J. Safkhani, Applied Physics A, 125, 276 (2019), https://doi.org/10.1007/s00339-019-2582-0

L. Schmidt-Mende, S.M. Zakeeruddin, and M. Grätzel, Applied Physics Letters, 86, 013504 (2005), https://doi.org/10.1063/1.1844032

W. Zhang, Y. Cheng, X. Yin, and B. Liu, Macromolecular Chemistry and Physics, 212, 15-23 (2011), https://doi.org/10.1002/macp.201000489

F. Arith, O.V. Aliyaselvam, A.N.M. Mustafa, M.K. Nor, and O.A. Al-Ani, International journal of renewable energy research, 11(2), 869-878 (2021), https://www.ijrer.org/ijrer/index.php/ijrer/article/view/12046/pdf

E.V.A. Premalal, G.R.R.A. Kumara, R.M.G. Rajapakse, M. Shimomura, K. Murakami, and A. Konno, Chemical Communication, 46, 3360–3362 (2010), https://doi.org/10.1039/B927336K

R. Hehl, and G. Thiele, Anorganische und Allgemeine Chemie, 626, 2167–2172 (2000), https://doi.org/10.1002/1521-3749(200010)626:10%3C2167::AID-ZAAC2167%3E3.0.CO;2-7

V. Perera, and K. Tennakone, Solar Energy Materials and Solar Cells, 79(2), 249–255 (2003), https://doi.org/10.1016/S0927-0248(03)00103-X

B.K. Korir, J.K. Kibet, and S.M. Ngari, Optical and Quantum Electronics, 53, 368 (2021), https://doi.org/10.1007/s11082-021-03013-8

M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Progress in Photovoltaics: Research and Applications, 12(2–3), 143 153 (2004), https://doi.org/10.1002/pip.524

D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, and L.J.A. Koster, Nature Communications, 6(1), 1–10 (2015), https://doi.org/10.1038/ncomms8083

E.V.A. Premalal, N. Dematage, and A. Konno, Chemistry Letters, 41, 510-512 (2012), https://doi.org/10.1246/cl.2012.510

A.M. Karmalawi, D.A. Rayan, and M.M. Rashad, Optik, 217, 164931 (2020), https://doi.org/10.1016/j.ijleo.2020.164931

A.J. McEvoy, L. Castaner, T. Markvart, in: Solar cells: materials, manufacture and operation, (Academic Press, Amsterdam. 2013), pp. 3–25.

N. Devi, K.A. Parrey, A. Aziz, and S. Datta, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 36(4), 04G105 (2018), https://doi.org/10.1116/1.5026163

Y. Gan, X. Bi, Y. Liu, B. Qin, Q. Li, Q. Jiang, and P. Mo, Energies, 13(22), 5907 (2020), https://doi.org/10.3390/en13225907

A.K. Daoudia, Y. El Hassouani, and A. Benami, International Journal of Engineering and Technical Research, 6(2), 71-75 (2016), https://www.academia.edu/download/54231833/IJETR042544.pdf

U. Mehmood, A. Al-Ahmed, F.A. Al-Sulaiman, M.I. Malik, F. Shehzad, and A.U.H. Khan, Renewable and Sustainable Energy Reviews, 79, 946 (2017), https://doi.org/10.1016/j.rser.2017.05.114

P. Roy, S. Tiwari, and A. Khare, Results in Optics, 4, 100083 (2021), https://doi.org/10.1016/j.rio.2021.100083

S. Dubey, J.N. Sarvaija, and B. Seshadri, Energy Procedia, 33, 311-321 (2013), https://doi.org/10.1016/j.egypro.2013.05.072

A. Shahriar, S. Hasnath, and M.A. Islam, EDU Journal of Computer and Electrical Engineering, 01(01), 31-37 (2020), https://doi.org/10.46603/ejcee.v1i1.21

C. Xiang, X. Zhao, L. Tan, J. Ye, S. Wu, S. Zhang, and L. Sun, Nano Energy, 55, 269–276 (2019), https://doi.org/10.1016/j.nanoen.2018.10.077

W. Cai, Z. Zhang, Y. Jin, Y. Lv, L. Wang, K. Chen, and X. Zhou, Solar Energy, 188, 441–449 (2019), https://doi.org/10.1016/j.solener.2019.05.081

N.A. Bakr, A.K. Ali, S.M. Jassim, and K.I. Hasoon, ZANCO Journal of Pure and Applied Sciences, 29(s4), s274-s280 (2017), https://doi.org/10.21271/ZJPAS.29.s4.31

J.M.K.W. Kumari, N. Sanjeevadharshini, M.A.K.L. Dissanayake, G.K.R. Senadeera, and C.A. Thotawatthage, Ceylon Journal of Science, 45(1), 33-41 (2016), http://dx.doi.org/10.4038/cjs.v45i1.7362

D.L. Domtau, J. Simiyu, E.O. Ayieta, L.O. Nyakiti, B. Muthoka, and J.M. Mwabora, Surface Review and Letters, 24(5), 1750065 (2017), https://doi.org/10.1142/S0218625X17500652

Z.S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coordination Chemistry Reviews, 248, 1381-1389 (2004), https://doi.org/10.1016/j.ccr.2004.03.006

M.C. Kao, H.Z. Chen, S.L. Young, C.Y. Kung, and C.C. Lin, Thin Solid Films, 517, 5096-5099 (2009), https://doi.org/10.1016/j.tsf.2009.03.102

F. Behrouznejad, S. Shahbazi, N. Taghavinia, H.P. Wu, and E. W-G. Diau, Journal of Materials Chemistry A, 4, 13488-13498 (2016), https://doi.org/10.1039/C6TA05938D

How to Cite
Danladi, E., Kashif, M., Daniel, T., Achem, C., Alpha, M., & Gyan, M. (2022). 7.379 % Power Conversion Efficiency of a Numerically Simulated Solid-State Dye-Sensitized Solar Cell with Copper (I) Thiocyanate as a Hole Conductor. East European Journal of Physics, (3), 19-31. https://doi.org/10.26565/2312-4334-2022-3-03