7.379 % Power Conversion Efficiency of a Numerically Simulated Solid-State Dye-Sensitized Solar Cell with Copper (I) Thiocyanate as a Hole Conductor
Abstract
Sourcing for an alternative to the liquid electrolyte in dye-sensitized solar cells (DSSCs) have been the subject of interest in the photovoltaic horizon. Herein, we reported by means of simulation, the performance of dye-sensitized solar cell by replacing the liquid electrolyte with a copper (I) thiocyanate (CuSCN) hole conductor. The study was carried out using Solar Capacitance Simulation Software (SCAPS) which is based on poisson and continuity equations. The simulation was done based on an n-i-p proposed architecture of FTO/TiO2/N719/CuSCN/Pt. The result of the initial device gave a Power Conversion Efficiency (PCE), Fill Factor (FF), Short Circuit Current Density (Jsc) and Open Circuit Voltage (Voc) of 5.71 %, 78.32 %, 6.23 mAcm-2, and 1.17 V. After optimizing input parameters to obtain 1×109 cm-2 for CuSCN/N719 interface defect density, 280 K for temperature, 1.0 μm for N719 dye thickness, 0.4 μm for TiO2 thickness, Pt for metal back contact, and 0.2 μm for CuSCN thickness, the overall device performance of 7.379 % for PCE, 77.983 % for FF, 7.185 mAcm-2 for Jsc and 1.317 V for Voc were obtained. When compared with the initial device, the optimized results showed an enhanced performance of ~ 1.29 times, 1.15 times, and 1.13 times in PCE, Jsc, and Voc over the initial device. The results obtained are encouraging and the findings will serve as a baseline to researchers involved in the fabrication of novel high-performance solid-state DSSCs to realize its appealing nature for industry scalability.
Downloads
References
B. O’regan, and M. Grätzel, Nature, 353, 737–740 (1991), https://doi.org/10.1038/353737a0
S. Sharma, K.K. Jain, and A. Sharma, Materials Sciences and Applications, 6(12), 1145–1155 (2015), https://doi.org/10.4236/msa.2015.612113
V.R. Gómez, F.A. Mató, D.S. Jiménez, G.S. Rodríguez, A.Z. Lara, I.M. De Los Santos, and H.Y.S. Hernández, Optical and Quantum Electronics, 52, 324 (2020), https://doi.org/10.1007/s11082-020-02437-y
A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, and H. Pettersson, Chemical Reviews, 110, 6595–6663 (2010), https://doi.org/10.1021/cr900356p
M. Gratzel, Accounts of Chemical Research, 42, 1788–1798 (2009), https://doi.org/10.1021/ar900141y
S. Yanagida, Y.H. Yu, and K. Manseki, Accounts of Chemical Research, 42, 1827–1838 (2009), https://doi.org/10.1021/ar900069p
I. Chung, B. Lee, J. He, R.P.H. Chang, and M.G. Kanatzidis, Nature, 485, 486-489 (2012), https://doi.org/10.1038/nature11067
M. Wang, N. Chamberland, L. Breau, J.E Moser, R.H. Baker, B. Marsan, S.M. Zakeeruddin, and M. Grätzel, Nature Chemistry, 2, 385–389 (2010), https://doi.org/10.1038/nchem.610
A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Science, 334, 629–634 (2011), https://doi.org/10.1126/science.1209688
K.H. Wong, K. Ananthanarayanan, S.R. Gajjela, and P. Balaya, Materials Chemistry and Physics, 125, 553-557 (2011), https://doi.org/10.1016/j.matchemphys.2010.10.017
F. Jahantigh, and M.J. Safkhani, Applied Physics A, 125, 276 (2019), https://doi.org/10.1007/s00339-019-2582-0
L. Schmidt-Mende, S.M. Zakeeruddin, and M. Grätzel, Applied Physics Letters, 86, 013504 (2005), https://doi.org/10.1063/1.1844032
W. Zhang, Y. Cheng, X. Yin, and B. Liu, Macromolecular Chemistry and Physics, 212, 15-23 (2011), https://doi.org/10.1002/macp.201000489
F. Arith, O.V. Aliyaselvam, A.N.M. Mustafa, M.K. Nor, and O.A. Al-Ani, International journal of renewable energy research, 11(2), 869-878 (2021), https://www.ijrer.org/ijrer/index.php/ijrer/article/view/12046/pdf
E.V.A. Premalal, G.R.R.A. Kumara, R.M.G. Rajapakse, M. Shimomura, K. Murakami, and A. Konno, Chemical Communication, 46, 3360–3362 (2010), https://doi.org/10.1039/B927336K
R. Hehl, and G. Thiele, Anorganische und Allgemeine Chemie, 626, 2167–2172 (2000), https://doi.org/10.1002/1521-3749(200010)626:10%3C2167::AID-ZAAC2167%3E3.0.CO;2-7
V. Perera, and K. Tennakone, Solar Energy Materials and Solar Cells, 79(2), 249–255 (2003), https://doi.org/10.1016/S0927-0248(03)00103-X
B.K. Korir, J.K. Kibet, and S.M. Ngari, Optical and Quantum Electronics, 53, 368 (2021), https://doi.org/10.1007/s11082-021-03013-8
M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Progress in Photovoltaics: Research and Applications, 12(2–3), 143 153 (2004), https://doi.org/10.1002/pip.524
D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, and L.J.A. Koster, Nature Communications, 6(1), 1–10 (2015), https://doi.org/10.1038/ncomms8083
E.V.A. Premalal, N. Dematage, and A. Konno, Chemistry Letters, 41, 510-512 (2012), https://doi.org/10.1246/cl.2012.510
A.M. Karmalawi, D.A. Rayan, and M.M. Rashad, Optik, 217, 164931 (2020), https://doi.org/10.1016/j.ijleo.2020.164931
A.J. McEvoy, L. Castaner, T. Markvart, in: Solar cells: materials, manufacture and operation, (Academic Press, Amsterdam. 2013), pp. 3–25.
N. Devi, K.A. Parrey, A. Aziz, and S. Datta, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 36(4), 04G105 (2018), https://doi.org/10.1116/1.5026163
Y. Gan, X. Bi, Y. Liu, B. Qin, Q. Li, Q. Jiang, and P. Mo, Energies, 13(22), 5907 (2020), https://doi.org/10.3390/en13225907
A.K. Daoudia, Y. El Hassouani, and A. Benami, International Journal of Engineering and Technical Research, 6(2), 71-75 (2016), https://www.academia.edu/download/54231833/IJETR042544.pdf
U. Mehmood, A. Al-Ahmed, F.A. Al-Sulaiman, M.I. Malik, F. Shehzad, and A.U.H. Khan, Renewable and Sustainable Energy Reviews, 79, 946 (2017), https://doi.org/10.1016/j.rser.2017.05.114
P. Roy, S. Tiwari, and A. Khare, Results in Optics, 4, 100083 (2021), https://doi.org/10.1016/j.rio.2021.100083
S. Dubey, J.N. Sarvaija, and B. Seshadri, Energy Procedia, 33, 311-321 (2013), https://doi.org/10.1016/j.egypro.2013.05.072
A. Shahriar, S. Hasnath, and M.A. Islam, EDU Journal of Computer and Electrical Engineering, 01(01), 31-37 (2020), https://doi.org/10.46603/ejcee.v1i1.21
C. Xiang, X. Zhao, L. Tan, J. Ye, S. Wu, S. Zhang, and L. Sun, Nano Energy, 55, 269–276 (2019), https://doi.org/10.1016/j.nanoen.2018.10.077
W. Cai, Z. Zhang, Y. Jin, Y. Lv, L. Wang, K. Chen, and X. Zhou, Solar Energy, 188, 441–449 (2019), https://doi.org/10.1016/j.solener.2019.05.081
N.A. Bakr, A.K. Ali, S.M. Jassim, and K.I. Hasoon, ZANCO Journal of Pure and Applied Sciences, 29(s4), s274-s280 (2017), https://doi.org/10.21271/ZJPAS.29.s4.31
J.M.K.W. Kumari, N. Sanjeevadharshini, M.A.K.L. Dissanayake, G.K.R. Senadeera, and C.A. Thotawatthage, Ceylon Journal of Science, 45(1), 33-41 (2016), http://dx.doi.org/10.4038/cjs.v45i1.7362
D.L. Domtau, J. Simiyu, E.O. Ayieta, L.O. Nyakiti, B. Muthoka, and J.M. Mwabora, Surface Review and Letters, 24(5), 1750065 (2017), https://doi.org/10.1142/S0218625X17500652
Z.S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coordination Chemistry Reviews, 248, 1381-1389 (2004), https://doi.org/10.1016/j.ccr.2004.03.006
M.C. Kao, H.Z. Chen, S.L. Young, C.Y. Kung, and C.C. Lin, Thin Solid Films, 517, 5096-5099 (2009), https://doi.org/10.1016/j.tsf.2009.03.102
F. Behrouznejad, S. Shahbazi, N. Taghavinia, H.P. Wu, and E. W-G. Diau, Journal of Materials Chemistry A, 4, 13488-13498 (2016), https://doi.org/10.1039/C6TA05938D
Citations
First-principles calculation to investigate structural and opto-electronic properties of transition base halide perovskite oxides for solar cell applications
Alsalmah Hessa A & Mehmood Shahid (2024) Solar Energy
Crossref
Predictive modeling of CsFABiCuI6-based PSC with Nd-doped ZnO as ETL using machine learning and numerical simulation
Nowsherwan Ghazi Aman, Riaz Saira & Naseem Shahzad (2025) Multiscale and Multidisciplinary Modeling, Experiments and Design
Crossref
Photovoltaic properties of halide perovskites for solar cell application with efficiency greater than 18%
Mehmood Shahid, Khan Numan, Ali Zahid, Khan Imad & Alsalhi Sarah Abdullah (2024) RSC Advances
Crossref
Highly efficient 25.562% Cs2AgBiBr6 double perovskite solar cell with copper barium tin sulfide and ZnO as charge transport channels: an intuition from a theoretical study using SCAPS-1D
Danladi Eli, Oguzie Emeka E. & Ezema Fabian I. (2025) Journal of Photonics for Energy
Crossref
A Qualitative Theoretical Study of Inorganic HTM-Free RbGeI3 Based Perovskite Solar Cells Using SCAPS 1D as a Pathway Towards 3.601% Efficiency
Ekwu Mary T., Danladi Eli, Tasie Nicholas N., Haruna Idoko S., Okoro Osaretin E., Gyuk Philibus M., Jimoh Olayinka M. & Obasi Rita C. (2023) East European Journal of Physics
Crossref
Computational simulation and designing of highly efficient chalcogenide BaZrS3-based perovskite solar cells utilizing hole and electron transport materials using SCAPS
Sowayan Ahmed, Ataya Sabbah, El-Naggar Ahmed A., Lotfy Lotfy A., Eid Ahmed M., Ismail M., Nasser Mohamed, Djuansjah Joy, Abdelfatah Mahmoud, Sharshir Swellam W. & El-Shaer Abdelhamid (2025) Journal of Physics and Chemistry of Solids
Crossref
Optoelectronic and photovoltaic applications of layered halide perovskites Cs3X2Cl9 (X = Mo, Tc, Ru and Rh): A-first principle study
Ali Hina, Ali Zahid, Ali Hamad, Ahmad Israr & Ali Mazhar (2026) Computational Condensed Matter
Crossref
Modeling and simulation of > 19% highly efficient PbS colloidal quantum dot solar cell: A step towards unleashing the prospect of quantum dot absorber
Danladi Eli, Kashif Muhammad, Ouladsmane Mohamed, Hossain Ismail, Egbugha Anselem C., Alao Joseph O., Achem Christopher U., Tasie Nicholas N., Aremo Oluwatosin S. & Umar Ahmed M. (2023) Optik
Crossref
Enhanced efficiency in dual-junction CuO/Cu2Se solar cells via NiO and TiO2 tunnel junction engineering
Hasani Ebrahim (2025) Physica Scripta
Crossref
SCAPS-1D simulated organometallic halide perovskites: A comparison of performance under Sub-Saharan temperature condition
Ozurumba Anthony C., Ogueke Nnamdi V., Madu Chinyere A., Danladi Eli, Mbachu Chisom P., Yusuf Abubakar S., Gyuk Philibus M. & Hossain Ismail (2024) Heliyon
Crossref
Numerical simulation and performance optimization of a solid-state dye-sensitized solar cell with iridium counter electrode
Langa Bethuel S.K., Nqombolo Azile, Meyer Edson L., Agoro Mojeed A. & Rono Nicholas (2025) Results in Surfaces and Interfaces
Crossref
Performance enhancement of CZTS solar cells via Cu2O HTL and Cd0.4Zn0.6S buffer layer: a numerical study
Moustafa Mohamed, El-Naggar Ahmed A., Abu Waar Ziad, Abdelfatah Mahmoud & El-Shaer Abdelhamid (2026) Results in Optics
Crossref
SCAPS simulation and design of highly efficient CuBi2O4-based thin-film solar cells (TFSCs) with hole and electron transport layers
El-Naggar Ahmed A., Eid Ahmed M., Rafat Yasmeen, Khamis Mohamed A., Bakry Mabrouk, Elkun Salah, Ismail Walid, Sharshir Swellam W., El-Shaer Abdelhamid & Abdelfatah Mahmoud (2025) Scientific Reports
Crossref
Copyright (c) 2022 Eli Danladi, Muhammad Kashif, Thomas O. Daniel, Christopher U. Achem, Matthew Alpha, Michael Gyan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



