A Qualitative Theoretical Study of Inorganic HTM-Free RbGeI3 Based Perovskite Solar Cells Using SCAPS 1D as a Pathway Towards 3.601% Efficiency

  • Mary T. Ekwu Department of Physics, Airforce Institute of Technology, Kaduna, Nigeria
  • Eli Danladi Department of Physics, Federal University of Health Sciences, Otukpo, Benue State, Nigeria https://orcid.org/0000-0001-5109-4690
  • Nicholas N. Tasie Department of Physics, Rivers State University, Port Harcourt, Rivers State, Nigeria https://orcid.org/0000-0001-8398-2596
  • Idoko S. Haruna Centre for Satellite Technology Development-NASRDA, Abuja, Nigeria
  • Osaretin E. Okoro Centre for Satellite Technology Development-NASRDA, Abuja, Nigeria
  • Philibus M. Gyuk Department of Physics, Kaduna State University, Kaduna, Nigeria
  • Olayinka M. Jimoh Department of Physics, Federal University, Dutsin-Ma, Katsina State, Nigeria
  • Rita C. Obasi Centre for Satellite Technology Development-NASRDA, Abuja, Nigeria
Keywords: perovskite solar cells, RbGeI3, SCAPS, layer thickness


The presence of toxic lead in perovskite solar cells has hindered its commercial viability. In this present work, a mesoscopic inorganic lead-free perovskite solar cells based on RbGeI3 was proposed and implemented using SCAPs simulation tool. The effect of electron transport material (ETM) and Absorber thickness were analyzed. When the device was first simulated, its power conversion efficiency (PCE), fill factor (FF), current density (Jsc), and open circuit voltage (Voc) all reached values of 3.584% for PCE, 48.477% for FF, 25.385 mA/cm2 for Jsc, and 0.291 V for Voc. When the ETM and absorber are at their ideal thicknesses of 0.08 and 0.40, the development of efficiency becomes stable. Using the aforementioned parameters, the optimized PSC device produced the following values: PCE = 3.601%, Jsc = 25.386 mA/cm2, Voc = 0.291 V, and FF = 48.637%. The PCE improvement over the basic device without optimization is around 1.01 times. The findings indicate that perovskite solar cell lacking HTM has a substantial capacity to absorb photon energy and produce electrons. It has also shown how to create environmentally clean and economically viable technology.


Download data is not yet available.


E. Danladi, M. Kashif, A. Ichoja, and B.B. Ayiya, Transactions of Tianjin University, 28(5), (2022). https://doi.org/10.1007/s12209-022-00343-w

E. Danladi, M. Kashif, T.O Daniel, C.U. Achem, M. Alpha, and M. Gyan, East European Journal of Physics, 3, 19 (2022). https://doi.org/10.26565/2312-4334-2022-3-03

Z. Qu, F. Ma, Y. Zhao, X. Chu, S. Yu, and J. You, Chinese Physics Letters, 38, 107801 (2021). https://doi.org/10.1088/0256-307X/38/10/107801

A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Journal of American Chemical Society, 131, 6050 (2009). https://doi.org/10.1021/ja809598r

G. Pindolia, S.M. Shinde, P.K. Jha, Solar Energy, 236, 802 (2022). https://doi.org/10.1016/j.solener.2022.03.053

J. Wu, Y. Li, Y. Li, W. Xie, J. Shi, D. Li, S. Cheng, and Q. Meng, Journal of Materials Chemistry A, 9, 6382 (2021). https://doi.org/10.1039/D0TA12046D

J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y.K. Kim, et al., Nature, 590(7847), 587 (2021). https://doi.org/10.1038/s41586-021-03285-w

W. Ke, and M.G. Kanatzidis, Nature Communications, 10, 965 (2019). https://doi.org/10.1038/s41467-019-08918-3

N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith, Energy & Environmental Science, 7, 3061 (2014). https://doi.org/10.1039/C4EE01076K

D. Saikia, J. Bera, A. Betal, and S. Sahu, Optical Materials, 123, 111839 (2022). https://doi.org/10.1016/j.optmat.2021.111839

T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S.G. Mhaisalkar, Journal of Materials Chemistry A, 3, 23829 (2015). https://doi.org/10.1039/C5TA05741H

D.K. Jayan, and V. Sebastian, Materials Today Communications, 28, 102650 (2021). https://doi.org/10.1016/j.mtcomm.2021.102650

M.G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N.P. Padture, and X.C. Zeng, Joule, 2, 1231 (2018). https://www.cell.com/joule/pdf/S2542-4351(18)30187-9.pdf

T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, and H.J. Snaith, Advanced Energy Materials, 5(20), 1500963 (2015). https://doi.org/10.1002/aenm.201500963

T.P.I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, and J. Salbeck, Chemical Reviews, 107, 1011 (2007). https://doi.org/10.1021/cr0501341

J.M. Tour, R. Wu, and J.S. Schumm, Journal of the American Chemical Society, 112, 5662 (1990). https://doi.org/10.1021/ja00170a053

A.F. Akbulatov, L.A. Frolova, M.P. Griffin, I.R. Gearba, A. Dolocan, D.A. Vanden Bout, S. Tsarev, E.A. Katz, A.F. Shestakov, K.J. Stevenson, and P.A. Troshin, Advanced Energy Materials, 7, 1700476 (2017). https://doi.org/10.1002/aenm.201700476

Z. Hawash, L.K. Ono, S.R. Raga, M.V. Lee, and Y. Qi, Chemistry of Materials, 27, 562 (2015). https://doi.org/10.1021/cm504022q

A.K. Jena, Y. Numata, M. Ikegami, and T. Miyasaka, Journal of Materials Chemistry A, 6, 2219 (2018). https://doi.org/10.1039/C7TA07674F

K. Norrman, M.V. Madsen, S.A. Gevorgyan, and F.C. Krebs, Journal of the American Chemical Society, 132, 16883 (2010). https://doi.org/10.1021/ja106299g

L. Etgar, P. Gao Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Gratzel, Journal of the American Chemical Society, 134(42), 17396 (2012). https://doi.org/10.1021/ja307789s

M.O. Abdulmalik, E. Danladi, R.C. Obasi, P.M. Gyuk, F.U. Salifu, S. Magaji, A.C. Egbugha, and D. Thomas, East European Journal of Physics, 4, 125 (2022). https://periodicals.karazin.ua/eejp/article/view/20949

J. Barb´e, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A. el Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, and S. del Gobbo, ACS Applied Materials Interfaces, 9, 11828 (2017). https://doi.org/10.1021/acsami.6b13675

S. Ahmed, F. Jannat, M.A.K. Khan, and M.A. Alim, Optik, 225, 165765 (2021). https://doi.org/10.1016/j.ijleo.2020.165765

How to Cite
Ekwu, M. T., Danladi, E., Tasie, N. N., Haruna, I. S., Okoro, O. E., Gyuk, P. M., Jimoh, O. M., & Obasi, R. C. (2023). A Qualitative Theoretical Study of Inorganic HTM-Free RbGeI3 Based Perovskite Solar Cells Using SCAPS 1D as a Pathway Towards 3.601% Efficiency. East European Journal of Physics, (1), 118-124. https://doi.org/10.26565/2312-4334-2023-1-14

Most read articles by the same author(s)