TEC variations in equatorial ionosphere during June 21, 2020 solar eclipse

  • L. F. Chernogor V. N. Karazin Kharkiv National University https://orcid.org/0000-0001-5777-2392
  • Yu. B. Mylovanov V. N. Karazin Kharkiv National University
  • V. L. Dorokhov V. N. Karazin Kharkiv National University
  • V. A. Podnos V. N. Karazin Kharkiv National University
  • A. M. Tsymbal V. N. Karazin Kharkiv National University https://orcid.org/0000-0002-5274-8876
  • M. B. Shevelev V. N. Karazin Kharkiv National University
Keywords: equatorial ionosphere, solar eclipse, GPS observations, total electron content, TEC depression

Abstract

Relevance. Solar eclipse (SE) is characterized by numerous dynamic processes in all the Earth's shells and geophysical fields. Each SE is the cause of regular and irregular effects that are unique. This is influenced by the SE magnitude, geographical coordinates, solar activity, time of year, time of day, atmospheric and space weather and other factors. Therefore, the task of a comprehensive and in-depth study of physical processes in geoshells for each new SE is relevant.

The aim of this paper is describing of the results of the analysis of vertical TEC caused by the SE on June 21, 2020 in the area near the Earth's equator. The eclipse was unique in that it was observed in equatorial and subtropical latitudes near the summer solstice and was annular character.

Methods and Methodology. Indian stations located south of the SE magnitude region were selected for analysis. The total error of the TEC assessment does not exceed 0.1 TECU.

Results. Temporal variations of TEC for the trajectory of satellites and the location of receiving stations south of the region of maximum eclipse were analyzed. For most time dependences of the TEC NV(t), the magnitude of the ΔNV depression was increased with growth coverage of the Sun's disk. The differences in this dependence can be explained by the peculiarities of the ionosphere in the equatorial belt of the Earth. The largest depression in TEC could be 4 TECU at Mmax » –0.643. The relative variations in the electron concentration were –19%. In the morning, the decrease in TEC did not exceed 2 TECU according to NV0 » 13.5–14.5 TECU. The relative decrease in electron concentration dV = –11%. During the annular eclipse, changes in the waveform character in variations in the concentration of electrons were practically not detected.

Conclusions. The parameters of TEC temporal variations in the equatorial ionosphere during the annular SE on June 21, 2020 have been established.

Downloads

Download data is not yet available.

Author Biographies

L. F. Chernogor, V. N. Karazin Kharkiv National University

Ukraine, 61022, Kharkiv, Svobody Square, 4

Yu. B. Mylovanov, V. N. Karazin Kharkiv National University

Ukraine, 61022, Kharkiv, Svobody Square, 4

V. L. Dorokhov, V. N. Karazin Kharkiv National University

Ukraine, 61022, Kharkiv, Svobody Square, 4

V. A. Podnos, V. N. Karazin Kharkiv National University

Ukraine, 61022, Kharkiv, Svobody Square, 4

A. M. Tsymbal, V. N. Karazin Kharkiv National University

Ukraine, 61022, Kharkiv, Svobody Square, 4

M. B. Shevelev, V. N. Karazin Kharkiv National University

Ukraine, 61022, Kharkiv, Svobody Square, 4

References

1. Cheng K, Huang YN, Chen SW. Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region. J. Geophys. Res. 1992;97(A1):103–112. https://doi.org/10.1029/91JA02409
2. Afraimovich EL, Palamartchouk KS, Perevalova NP, Chernukhov VV, Lukhnev AV, Zalutsky VT. Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data. Geophys. Res. Lett. 1998;25(4):465–468. https://doi.org/10.1029/98GL00186
3. Tsai HF, Liu JY. Ionospheric total electron content response to solar eclipses. J. Geophys. Res. 1999;104(A6):12657–12668. https://doi.org/10.1029/1999JA900001
4. Choudhary RK, StMaurice JP, Ambili KM, Sunda S, Pathan BM. The impact of the January 15, 2010, annular solar eclipse on the equatorial and low latitude ionospheric densities. J. Geophys. Res. Space Phys. 2011;116(A9):A09309. https://doi.org/10.1029/2011JA016504
5. Chernogor LF. Physical effects of solar eclipses in atmosphere and geospace. Kharkiv: V. N. Karazin Kharkiv National University, 2013. 480 p. [in Russian].
6. Coster AJ, Goncharenko L, Zhang SR, Erickson PJ, Rideout W, Vierinen J. GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2017;44(24):12041–12048. https://doi.org/10.1002/2017GL075774
7. Huba JD, Drob D. SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. 2017;44(12):5928–5935. https://doi.org/10.1002/2017GL073549
8. Zhang SR, Erickson PJ, Goncharenko LP, Coster AJ, Rideout W, Vierinen J. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2017. 44(24):12067–12073.
9. Cherniak I, Zakharenkova I. Ionospheric Total Electron Content Response to the Great American Solar Eclipse of 21 August 2017. Geophys. Res. Lett. 2018;45(3):1199–1208. https://doi.org/10.1002/2017GL075989
10. Dang T, Lei J, Wang W, Zhang B, Burns A, Le H, Wu Q, Ruan H, Dou X, Wan W. Global Responses of the Coupled Thermosphere and Ionosphere System to the August 2017 Great American Solar Eclipse. J. Geophys. Res. Space Phys. 2018;123(8):7040–7050. https://doi.org/10.1029/2018JA025566
11. Lei J, Dang T, Wang W, Burns A, Zhang B, Le H. Long-Lasting Response of the Global Thermosphere and Ionosphere to the 21 August 2017 Solar Eclipse. J. Geophys. Res. Space Phys. 2018;123(5):4309–4316.
https://doi.org/10.1029/2018JA025460
12. Nayak C, Yiğit E. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere During 21 August 2017 Total Solar Eclipse. J. Geophys. Res. Space Phys. 2018;123(1):725–738. https://doi.org/10.1002/2017JA024845
13. Reinisch BW, Dandenault PB, Galkin IA, Hamel R, Richards PG. Investigation of the Electron Density Variation During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2018;45(3):1253–1261.
https://doi.org/10.1002/2017GL076572
14. Sun YY, Liu JY, Lin CCH, Lin CY, Shen MH, Chen CH, Chen CH, Chou MY. Ionospheric Bow Wave Induced by the Moon Shadow Ship Over the Continent of United States on 21 August 2017. Geophys. Res. Lett. 2018;45(2):538–544. https://doi.org/10.1002/2017GL075926
15. Wu C, Ridley AJ, Goncharenko L, Chen G. GITM-Data Comparisons of the Depletion and Enhancement During the 2017 Solar Eclipse. Geophys. Res. Lett. 2018;45(8):3319–3327. https://doi.org/10.1002/2018GL077409
16. Chen CH, Lin CHC, Matsuo T. Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach. Prog. Earth Planet. Sci. 2019;(6):13. https://doi.org/10.1186/s40645-019-0263-4
17. Cnossen I, Ridley AJ, Goncharenko LP, Harding BJ. The Response of the Ionosphere-Thermosphere System to the 21 August 2017 Solar Eclipse. J. Geophys. Res. Space Phys. 2019;124(8):7341–7355.
https://doi.org/10.1029/2018JA026402
18. Perry GW, Watson C, Howarth AD, Themens DR, Foss V, Langley RB, Yau AW. Topside Ionospheric Disturbances Detected Using Radio Occultation Measurements During the August 2017 Solar Eclipse. Geophys. Res. Lett. 2019;46(13):7069–7078. https://doi.org/10.1029/2019GL083195
19. Wang W, Dang T, Lei J, Zhang S, Zhang B, Burns A. Physical Processes Driving the Response of the F2 Region Ionosphere to the 21 August 2017 Solar Eclipse at Millstone Hill. J. Geophys. Res. Space Phys. 2019;124(4):2978–2991. https://doi.org/10.1029/2018JA025479
20. Liu J-Y, Wu T-Y, Sun Y-Y, Pedatella NM, Lin C-Y, Chang LC, Chiu Y-C, Lin C-H, Chen C-H, Chang F-Y, Lee I-T, Chao C-K, Krankowski A. Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example. J. Geophys. Res. Space Phys. 2020;125(12):e28472. https://doi.org/10.1029/2020JA028472
21. Zhang R, Le H, Li W, Ma H, Yang Y, Huang H, Li Q, Zhao X, Xie H, Sun W, Li G, Chen Y, Zhang H, Liu L. Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse. J. Geophys. Res. Space Phys. 2020;125(12):e2020JA028450. https://doi.org/10.1029/2020JA028450
https://doi.org/10.1002/2017GL076054
22. Guo Q, Chernogor LF, Garmash KP, Rozumenko VT, Zheng Y. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. 2020;55(2):e2019RS006866. https://doi.org/10.1029/2019RS006866
23. Aa E, Zhang SR, Erickson PJ, Goncharenko LP, Coster AJ, Jonah OF, Lei J, Huang F, Dang T, Liu L. Coordinated ground-based and space-borne observations of ionospheric response to the annular solar eclipse on 26 December 2019.;J. Geophys. Res.: Space Phys. 2020;125(11):e2020JA028296.
https://doi.org/10.1029/2020JA028296
24. Zhang SR, Erickson PJ, Vierinen J, Aa E, Rideout W, Coster AJ, Goncharenko LP. Conjugate ionospheric perturbation during the 2017 solar eclipse. J. Geophys. Res. Space Phys. 2021;126(2):e2020JA028531. https://doi.org/10.1029/2020JA028531
25. Chernogor LF, Garmash KP, Zhdanko YH, Leus SG, Luo Y. Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021. Radio Phys. Radio Astron. 2021;26(4):326–343 [In Ukrainian]. https://doi.org/10.15407/rpra26.04.326
26. Chernogor LF., Mylovanov YuB., Luo Y. Effects from the June 10, 2021 solar eclipse in the high-latitude ionosphere: results of GPS observations. Radio Phys. Radio Astron. 2022;27(1):15–31 [In Ukrainian].
27. Chernogor LF, Garmash KP. Ionospheric Processes during the Partial Solar Eclipse above Kharkiv on June 10, 2021. Kinematics and Physics of Celestial Bodies. 2022;38(2):61–72. https://doi.org/10.3103/S0884591322020039
28. Chernogor LF., Mylovanov YuB. Ionospheric Effects from the June 10, 2021 Solar Eclipse in the Polar Region. Kinematics and Physics of Celestial Bodies. 2022;38 [In Press].
29. Dang T, Lei JH, Wang WB, Yan MD, Ren DX, Huang FQ. Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse. Earth Planet. Phys. 2020;4(3):231–237. https://doi.org/10.26464/epp2020032
30. Huang F, Li Q, Shen X, Xiong C, Yan R, Zhang S-R, Wang W, Aa E, Zhong J, Dang T, Lei J. Ionospheric responses at low latitudes to the annular solar eclipse on 21 June 2020;J. Geophys. Res. Space Phys. 2020;125(10):e2020JA028483. https://doi.org/10.1029/2020JA028483
31. Le H, Liu L, Ren Z, Chen Y, Zhang H. Effects of the 21 June 2020 solar eclipse on conjugate hemispheres: A modeling study. J. Geophys. Res. Space Phys. 2020;125(11):e2020JA028344. https://doi.org/10.1029/2020JA028344
32. Aa E, Zhang S-R, Shen H, Liu S, Li J. Local and conjugate ionospheric total electron content variation during the 21 June 2020 solar eclipse. Adv. Space Res. 2021;68(8):3435–3454. https://doi.org/10.1016/j.asr.2021.06.015
33. Chen Y, Feng P, Liu C, Chen Y, Huang L, Duan J, Hua Y, Li X. Impact of the annular solar eclipse on June 21, 2020 on BPL time service performance. AIP Advances. 2021;11(11):115003. https://doi.org/10.1063/5.0064445
34. Huang L, Liu C, Chen Y, Wang X, Feng P, Li X. Observations and analysis of the impact of annular eclipse on 10 MHz short-wave signal in Sanya area on June 21, 2020. AIP Advances. 2021;11(11):115317. https://doi.org/10.1063/5.0068778
35. Patel K, Singh AK. Changes in atmospheric parameters due to annular solar eclipse of June 21, 2020, over India. Indian J. Phys. 2021. https://doi.org/10.1007/s12648-021-02112-2
36. Şentürk E, Arqim Adil M, Saqib M. Ionospheric total electron content response to annular solar eclipse on June 21, 2020. Adv. Space Res. 2021;67(6):1937–1947. https://doi.org/10.1016/j.asr.2020.12.024
37. Shagimuratov II, Zakharenkova IE, Tepenitsyna NY, Yakimova GA, Efishov II. Features of the Ionospheric Total Electronic Content Response to the Annular Solar Eclipse of June 21, 2020. Geomagn. Aeron. 2021;61:756–762. https://doi.org/10.1134/S001679322105011X
38. Sun YY, Chen CH, Qing H, Xu R, Su X, Jiang C, Yu T, Wang J, Xu H, Lin K. Nighttime ionosphere perturbed by the annular solar eclipse on June 21, 2020;J. Geophys. Res. Space Phys. 2021;126(9):e2021JA029419. https://doi.org/10.1029/2021JA029419
39. Wang X, Li B, Zhao F, Luo X, Huang L, Feng P, Li X. Variation of Low-Frequency Time-Code Signal Field Strength during the Annular Solar Eclipse on 21 June 2020: Observation and Analysis. Sensors. 2021;21(4):1216. https://doi.org/10.3390/s21041216
40. Wang J, Zuo X, Sun YY, Yu T, Wang Y, Qiu L, Mao T, Yan X, Yang N, Qi Y, Lei J, Sun L, Zhao B. Multilayered sporadic-E response to the annular solar eclipse on June 21, 2020;Space Weather. 2021;19(3):e2020SW002643. https://doi.org/10.1029/2020SW002643
41. Zhang R, Le H, Li W, Ma H, Yang Y, Huang H, Li Q, Zhao X, Xie H, Sun W, Li G, Chen Y, Zhang H, Liu L. Multiple technique observations of the ionospheric responses to the 21 June 2020 solar eclipse. J. Geophys. Res. Space Phys. 2021;125(12):e2020JA028450. https://doi.org/10.1029/2020JA028450
42. Tripathi G, Singh SB, Kumar S, Ashutosh K Singh, Singh R, Singh AK. Effect of 21 June 2020 solar eclipse on the ionosphere using VLF and GPS observations and modeling. Adv. Space Res. 2022;6(1):254–265. https://doi.org/10.1016/j.asr.2021.11.007
43. Chernogor LF, Mylovanov, YuB. Ionospheric Effects of the August 11, 2018, Solar Eclipse over the People’s Republic of China. Kinemat. Phys. Celest. Bodies. 2020;36(6):274–290. https://doi.org/10.3103/S0884591320060021
44. Universität Bern Astronomisches Institut. Satellite geodesy. CODE Products. URL: ftp.aiub.unibe.ch/CODE/ (Last access: 15.09.2021).
45. Burmaka VP, Taran VI, Chernogor LF. Wave-Like Processes in the Ionosphere under Quiet and Disturbed Conditions. 1. Kharkov Incoherent Scatter Radar Observations. Geomagnetism and Aeronomy. 2006;46(2):183–198. https://doi.org/10.1134/S0016793206020071
46. Burmaka VP, Taran VI, Chernogor LF. Wave-Like Processes in the Ionosphere under Quiet and Disturbed Conditions. 2. Analysis of Observations and Simulation. Geomagnetism and Aeronomy. 2006;46(2):199–208. https://doi.org/10.1134/S0016793206020083
47. Chernogor LF. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagnetism and Aeronomy. 2010;50(3):346–361. https://doi.org/10.1134/S0016793210030096
48. Chernogor LF. Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomagnetism and Aeronomy. 2012;52(6):768–778. https://doi.org/10.1134/S0016793212050039
49. Chernogor LF. Effects of Solar Eclipses in the Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagnetism and Aeronomy. 2012;52(6):779–792. https://doi.org/10.1134/S0016793212050040
50. Burmaka VP, Chernogor LF. Solar Eclipse of August 1, 2008, above Kharkov: 2. Observation Results of Wave Disturbances in the Ionosphere. Geomagnetism and Aeronomy. 2013;53(4):479–491.
https://doi.org/10.1134/S001679321304004X
51. Panasenko SV, Otsuka Y, van de Kamp M, Chernogor LF, Shinbori A, Tsugawa T, Nishioka M. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. Journal of Atmospheric and Solar-Terrestrial Physics. 2019;191:105051. https://doi.org/10.1016/j.jastp.2019.05.015
Published
2022-06-28
Cited
How to Cite
Chernogor, L. F., Mylovanov, Y. B., Dorokhov, V. L., Podnos, V. A., Tsymbal, A. M., & Shevelev, M. B. (2022). TEC variations in equatorial ionosphere during June 21, 2020 solar eclipse. Visnyk of V.N. Karazin Kharkiv National University, Series “Radio Physics and Electronics”, (36), 49-65. https://doi.org/10.26565/2311-0872-2022-36-04

Most read articles by the same author(s)