Моделювання течії у прямому жорсткостінному каналі з двома прямокутними осесиметричними звуженнями. Частина 2. Альтернативний підхід
Анотація
Запропоновано аналітично-чисельний метод другого порядку точності, котрий дозволяє вивчати рух рідини у двовимірному жорсткостінному каналі з двома послідовними жорсткими осесиметричними обривними звуженнями. Він складається з п’яти основних етапів. На першому з них вибираються відповідні масштаби задачі, на основі яких проводиться безрозмірювання співвідношень, що описують рух рідини у досліджуваному каналі. Далі (другий етап) виводяться інтегральні аналоги цих безрозмірних співвідношень і виконується їх дискретизація (третій етап). На четвертому етапі зв’язані нелінійні алгебраїчні рівняння для швидкості і тиску, одержані у результаті проведення зазначеної дискретизації, зводяться до відповідних незалежних лінійних. Для цього приймаються фізично обґрунтовані припущення, виконуються відповідні математичні операції, а також застосовується процедура знаходження та узгодження між собою послідовних наближень шуканих величин. При цьому кількість наближень визначається необхідною точністю розв’язку. І на останньому (п’ятому) етапі вибирається метод розв’язування вказаних лінійних рівнянь. Зазначена вище дискретизація складається із просторової та часової частин. Перша частина виконується на основі використання total variation diminishing схеми, а також двоточкової схеми дискретизації просторових похідних. При проведенні ж другої частини дискретизації застосовується неявна триточкова несиметрична схема з різницями назад. Що стосується методу розв’язування вказаних вище лінійних рівнянь, то це – відповідний ітераційний метод, який послідовно використовує методи відкладеної корекції та спряжених градієнтів, а також солвери ICCG (для симетричних матриць) та Bi-CGSTAB (для асиметричних матриць).
Завантаження
Посилання
/Посилання
S. A. Berger and L.-D. Jou, “Flows in stenotic vessels”, Annual Review of Fluid Mechanics, Vol. 32, pp. 347-382, 2000. https://www.annualreviews.org/doi/abs/10.1146/annurev.fluid.32.1.347
A. O. Borisyuk, “Experimental study of wall pressure fluctuations in a pipe behind a cylindrical insertion with eccentricity”, International Journal of Fluid Mechanics Research, Vol. 31, no. 2, pp. 160-175, 2004. https://www.dl.begellhouse.com/journals/71cb29ca5b40f8f8,3d13b81c75055127,5da79a32571c5030.html
A. O. Borisyuk, “Experimental study of wall pressure fluctuations in rigid and elastic pipes behind an axisymmetric narrowing”, Journal of Fluids and Structures, Vol. 26, no. 4, pp. 658-674, 2010. https://www.semanticscholar.org/paper/Experimental-study-of-wall-pressure-fluctuations-in-Borisyuk/e34d26189326a0486954995b85d2a7f0c7c4df07
A. O. Borysyuk and Ya. A. Borysyuk, “Wall pressure fluctuations behind a pipe narrowing of various shapes”, Science-Based Technologies, Vol. 34, no. 2, pp. 162-170, 2017. https://jrnl.nau.edu.ua/index.php/SBT/article/view/11615
A. Aldrovandi et al., “Computed tomography coronary angiography in patients with acute myocardial infarction without significant coronary stenosis”’ Circulation, Vol. 126, pp. 3000-3007, 2012. https://pubmed.ncbi.nlm.nih.gov/23168414/
A. O. Borisyuk, “Study of the flow and acoustic fields in a rigid-walled channel of circular cross-section with a local axisymmetric narrowing. A theory”, International Journal of Fluid Mechanics Research, Vol. 34, no. 2, pp. 99-114, 2007. https://www.dl.begellhouse.com/journals/71cb29ca5b40f8f8,51cd07171f116855,3ae1821c30eed7db.html
A. O. Borisyuk, “Study of the flow and acoustic fields in a rigid-walled channel of circular cross-section with a local axisymmetric narrowing. Numerical results”, International Journal of Fluid Mechanics Research, Vol. 34, no. 3, pp. 191-209, 2007. https://www.dl.begellhouse.com/journals/71cb29ca5b40f8f8,7646d83d07bfe37d,14c3252503235748.html
V. S. Malyuga, “Numerical study of flow in a channel with two serial stenoses”, Applied Hydromechanics, Vol. 12, no. 4, pp. 45-62, 2010. [in Russian] http://www.hydromech.com.ua/rus/PH-HTML/PH-012/4/PDF/PH-12-4(45-62).PDF
A. V. Shaldenko and A. A. Gurzhii, “Analysis of the heat transfer processes in a straight channel with insertions at small Reynolds numbers”, Applied Hydromechanics, Vol. 17, no. 3, pp. 55-66, 2015. [in Russian] http://hydromech.org.ua/content/pdf/ph/ph-17-3(55-66).pdf
E. V. Bruyatckii, A. G. Kostin and E. I. Nikiforovich, “Numerical study of the velocity and pressure fields in a flat channel with a square obstacle on its wall”, Applied Hydromechanics, Vol. 13, no. 3, pp. 33-47, 2011. [in Russian] http://hydromech.org.ua/content/pdf/ph/ph-13-3(33-47).pdf
A. O. Borysyuk, “Flow modelling in a straight rigid-walled duct with two rectangular axisymmetric narrowings. Part 1. A theory”, Bulletin of V.N. Karazin Kharkiv National University, series «Mathematical Modeling. Information Technology. Automated Control Systems», Vol. 44, pp. 4-15, 2019. https://periodicals.karazin.ua/mia/article/view/15762/14605
C. Hirsch, Numerical computation of internal and external flows. Oxford: Butterworth-Heinemann, 2007. 656 p. https://www.sciencedirect.com/book/9780750665940/numerical-computation-of-internal-and-external-flows
J. H. Ferziger and M. Peri´c, Computational methods for fluid dynamics, 3rd ed. Berlin: Springer, 2002. 424 p. https://link.springer.com/book/10.1007/978-3-642-56026-2
N. P. Waterson and H. Deconinck, “Design principles for bounded higher-order convection schemes – a unified approach”, Journal of Computational Physics, Vol. 224, pp. 182–207, 2007. https://www.sciencedirect.com/science/article/pii/S002199910700040X
R. I. Issa, “Solution of implicitly discretised fluid flow equations by operator-splitting”, Journal of Computational Physics, Vol. 62, pp. 40–65, 1986. https://www.sciencedirect.com/science/article/pii/0021999186900999
H. K.Versteeg and W. Malalasekera, An introduction to computational fluid dynamics, 2nd ed. Harlow: Pearson Education Ltd, 2007. 503 p. http://ftp.demec.ufpr.br/disciplinas/TM702/Versteeg_Malalasekera_2ed.pdf
J. D. Anderson Jr., Computational fluid dynamics. The basics with applications. New York: Mc.Graw-Hill, 1995. 547 p. https://www.airloads.net/Downloads/Textbooks/Computational-Fluid-Dynamcs-the-Basics-With-Applications-Anderson-J-D.pdf
R. Barrett et al., Templates for the solution of linear systems: Building blocks for iterative methods, 2nd ed. Philadelphia: SIAM, 1994. 107 p. https://www.netlib.org/templates/templates.pdf
H. A. Van Der Vorst, Iterative Krylov methods for large linear systems. Cambridge: Cambridge Univ. Press, 2003. 221 p. https://www.cambridge.org/core/books/iterative-krylov-methods-for-large-linear-systems/FFB93854B3C47699F045AC396C0A208F
H. A. Van Der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing. 1992. Vol. 13 (2). P. 631–644. https://epubs.siam.org/doi/10.1137/0913035
Berger S. A., Jou L.-D. Flows in stenotic vessels. Annual Review of Fluid Mechanics. 2000. Vol. 32. P.347-382. https://www.annualreviews.org/doi/abs/10.1146/annurev.fluid.32.1.347
Borisyuk A. O. Experimental study of wall pressure fluctuations in a pipe behind a cylindrical insertion with eccentricity. International Journal of Fluid Mechanics Research. 2004. Vol. 31, no. 2. P. 160-175. https://www.dl.begellhouse.com/journals/71cb29ca5b40f8f8,3d13b81c75055127,5da79a32571c5030.html
Borisyuk A. O. Experimental study of wall pressure fluctuations in rigid and elastic pipes behind an axisymmetric narrowing. Journal of Fluids and Structures. 2010. Vol. 26, no. 4. P. 658-674. https://www.semanticscholar.org/paper/Experimental-study-of-wall-pressure-fluctuations-in-Borisyuk/e34d26189326a0486954995b85d2a7f0c7c4df07
Borysyuk A. O., Borysyuk Ya. A. Wall pressure fluctuations behind a pipe narrowing of various shapes. Наукоємні Технології. 2017. Том 34, №2. С. 162-170. https://jrnl.nau.edu.ua/index.php/SBT/article/view/11615
Aldrovandi A. et al., Computed tomography coronary angiography in patients with acute myocardial infarction without significant coronary stenosis. Circulation. 2012. Vol. 126. P. 3000-3007. https://pubmed.ncbi.nlm.nih.gov/23168414/
Borisyuk A. O. Study of the flow and acoustic fields in a rigid-walled channel of circular cross-section with a local axisymmetric narrowing. A theory. International Journal of Fluid Mechanics Research. 2007. Vol. 34, no. 2. P. 99-114. https://www.dl.begellhouse.com/journals/71cb29ca5b40f8f8,51cd07171f116855,3ae1821c30eed7db.html
Borisyuk A. O. Study of the flow and acoustic fields in a rigid-walled channel of circular cross-section with a local axisymmetric narrowing. Numerical results. International Journal of Fluid Mechanics Research. 2007. Vol. 34, no. 3. P. 191-209. https://www.dl.begellhouse.com/journals/71cb29ca5b40f8f8,7646d83d07bfe37d,14c3252503235748.html
Малюга В. С. Численное исследование течения в канале с двумя последовательно расположенными стенозами. Прикладна гідромеханіка. 2010. Том 12, №4. С. 45-62. http://www.hydromech.com.ua/rus/PH-HTML/PH-012/4/PDF/PH-12-4(45-62).PDF
Шалденко А. В., Гуржий А. А. Анализ процессов теплопереноса в прямолинейном канале со вставками при малых числах Рейнольдса. Прикладна гідромеханіка. 2015. Том 17, №3. С. 55-66. http://hydromech.org.ua/content/pdf/ph/ph-17-3(55-66).pdf
Бруяцкий Е. В., Костин А. Г., Никифорович Е. В. Численное исследование полей скорости и давления в плоском канале при наличии на его стенке квадратного препятствия. Прикладна гідромеханіка. 2011. Том 13, № 3. С. 33-47. http://hydromech.org.ua/content/pdf/ph/ph-13-3(33-47).pdf
Borysyuk A. O. Flow modelling in a straight rigid-walled duct with two rectangular axisymmetric narrowings. Part 1. A theory. Вісник Харківського національного університету імені В.Н. Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління», 2019. Вип. 44, С. 4-15. https://periodicals.karazin.ua/mia/article/view/15762/14605
Hirsch C. Numerical computation of internal and external flows. Oxford: Butterworth-Heinemann, 2007. 656 p. https://www.sciencedirect.com/book/9780750665940/numerical-computation-of-internal-and-external-flows
Ferziger J. H., Peri´c M. Computational methods for fluid dynamics, 3rd ed. Berlin: Springer, 2002. 424 p. https://link.springer.com/book/10.1007/978-3-642-56026-2
Waterson N. P., Deconinck H. Design principles for bounded higher-order convection schemes – a unified approach. Journal of Computational Physics. 2007. Vol. 224. P. 182–207. https://www.sciencedirect.com/science/article/pii/S002199910700040X
Issa R. I. Solution of implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics. 1986. Vol. 62. P. 40–65. https://www.sciencedirect.com/science/article/pii/0021999186900999
Versteeg H. K., Malalasekera W. An introduction to computational fluid dynamics, 2nd ed. Harlow: Pearson Education Ltd, 2007. 503 p. http://ftp.demec.ufpr.br/disciplinas/TM702/Versteeg_Malalasekera_2ed.pdf
Anderson J. D., Jr. Computational fluid dynamics. The basics with applications. New York: Mc.Graw-Hill, 1995. 547 p. https://www.airloads.net/Downloads/Textbooks/Computational-Fluid-Dynamics-the-Basics-With-Applications-Anderson-J-D.pdf
Barrett R. et al. Templates for the solution of linear systems: Building blocks for iterative methods, 2nd ed. Philadelphia: SIAM, 1994. 107 p. https://www.netlib.org/templates/templates.pdf
Van Der Vorst H.A. Iterative Krylov methods for large linear systems. Cambridge: Cambridge Univ. Press, 2003. 221 p. https://www.cambridge.org/core/books/iterative-krylov-methods-for-large-linear-systems/FFB93854B3C47699F045AC396C0A208F
Van Der Vorst H. A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal of Scientific and Statistical Computing. 1992. Vol. 13 (2). P. 631–644. https://epubs.siam.org/doi/10.1137/0913035