The Type-Conversion of Oscillations at the Excitation of Nonlinear Layered Media
Keywords:
cubically polarizable medium; resonance scattering; generation of oscillations; self-consistent analysis; a type-conversion of the oscillations
Abstract
The present paper focuses on the development of a mathematical model, an effective algorithm and a self-consistent numerical analysis of the multifunctional properties of resonant scattering and generation of oscillations by nonlinear, cubically polarizable layered structures. It presents results of the numerical analysis characterizing the type-conversion of the generation/scattering oscillations of the nonlinear layered structures for one/two-sided acting fields at the generation/scattering frequency were taken into account and could be observed. These effects were observed at a symmetry violation of the nonlinear problem.
Downloads
Download data is not yet available.
References
Shen Y.R. The Principles of Nonlinear Optics, - NY–Chicester–Brisbane–Toronto–Singapore: John Wiley and Sons, 1984. – 567 p.
Akhmediev N.N., Ankiewicz A. Solitons, - M.: Fizmatlit, 2003. – 304 p.
Kivshar Y.S., Agrawal G.P. Optical Solitons. From Fibers to Photonic Crystals, - NY: Academic Press, 2003. – 540 p.
Chernogor L.F. Nonlinear Radio Physics. – Kharkiv: V.N. Karazin Kharkiv National University, 2004. – 200 p.
Miloslavsky V.K. Nonlinear Optics. – Kharkiv: V.N. Karazin Kharkiv National University, 2008. – 312 p.
Angermann L., Yatsyk V.V. Generation and Resonance Scattering of Waves on Cubically Polarisable Layered Structures. // In: Ed. L. Angermann, Numerical Simulations – Applications, Examples and Theory. – Rijeka, Croatia: InTech, 2011. – Chapter 8. – P. 175–212.
Angermann L., Yatsyk V.V., Yatsyk M.V. Preset Field Approximation and Self-Consistent Analysis of the Scattering and Generation of Oscillations by a Layered Structure. // In: Eds. L. Beilina and Y.V. Shestopalov, Inverse Problems and Large-Scale Computations. Springer Proceedings in Mathematics & Statistics 52. – Switzerland: Springer International Publishing, 2013. – Chapter 4. – P. 41-56.
Angermann L., Yatsyk V.V. Mathematical Models of Electrodynamical Processes of Wave Scattering and Generation on Cubically Polarisable Layers. // Progress In Electromagnetics Research B. – 2013. – Vol. 56. – P. 109-136.
Angermann L., Shestopalov Y.V., Yatsyk V.V. Eigenmodes of Linearised Problems of Scattering and Generation of Oscillations on Cubically Polarisable Layers. // In: Ed. L. Beilina, Inverse Problems and Applications. Springer Proceedings in Mathematics & Statistics 120. – Switzerland: Springer International Publishing, 2015. – Chapter 5. – P. 67-80.
Kleinman D.A. Nonlinear Dielectric Polarization in Optical Media. // Phys. Rev. – 1962. – Vol. 126. – P. 1977-1979.
Shestopalov V.P., Sirenko Y.K. Dynamic Theory of Gratings. – Kiev: Naukova Dumka, 1989. – 214 p.
Shestopalov V.P., Yatsik V.V. Spectral Theory of a Dielectric Layer and the Morse Critical Points of Dispersion Equations // Ukrainian Journal of Physics. – 1997. – Vol. 42. – No. 7. – P. 861-869.
Akhmediev N.N., Ankiewicz A. Solitons, - M.: Fizmatlit, 2003. – 304 p.
Kivshar Y.S., Agrawal G.P. Optical Solitons. From Fibers to Photonic Crystals, - NY: Academic Press, 2003. – 540 p.
Chernogor L.F. Nonlinear Radio Physics. – Kharkiv: V.N. Karazin Kharkiv National University, 2004. – 200 p.
Miloslavsky V.K. Nonlinear Optics. – Kharkiv: V.N. Karazin Kharkiv National University, 2008. – 312 p.
Angermann L., Yatsyk V.V. Generation and Resonance Scattering of Waves on Cubically Polarisable Layered Structures. // In: Ed. L. Angermann, Numerical Simulations – Applications, Examples and Theory. – Rijeka, Croatia: InTech, 2011. – Chapter 8. – P. 175–212.
Angermann L., Yatsyk V.V., Yatsyk M.V. Preset Field Approximation and Self-Consistent Analysis of the Scattering and Generation of Oscillations by a Layered Structure. // In: Eds. L. Beilina and Y.V. Shestopalov, Inverse Problems and Large-Scale Computations. Springer Proceedings in Mathematics & Statistics 52. – Switzerland: Springer International Publishing, 2013. – Chapter 4. – P. 41-56.
Angermann L., Yatsyk V.V. Mathematical Models of Electrodynamical Processes of Wave Scattering and Generation on Cubically Polarisable Layers. // Progress In Electromagnetics Research B. – 2013. – Vol. 56. – P. 109-136.
Angermann L., Shestopalov Y.V., Yatsyk V.V. Eigenmodes of Linearised Problems of Scattering and Generation of Oscillations on Cubically Polarisable Layers. // In: Ed. L. Beilina, Inverse Problems and Applications. Springer Proceedings in Mathematics & Statistics 120. – Switzerland: Springer International Publishing, 2015. – Chapter 5. – P. 67-80.
Kleinman D.A. Nonlinear Dielectric Polarization in Optical Media. // Phys. Rev. – 1962. – Vol. 126. – P. 1977-1979.
Shestopalov V.P., Sirenko Y.K. Dynamic Theory of Gratings. – Kiev: Naukova Dumka, 1989. – 214 p.
Shestopalov V.P., Yatsik V.V. Spectral Theory of a Dielectric Layer and the Morse Critical Points of Dispersion Equations // Ukrainian Journal of Physics. – 1997. – Vol. 42. – No. 7. – P. 861-869.
Published
2015-10-26
How to Cite
Angermann, L., Yatsyk, V. V., & Yatsyk, M. V. (2015). The Type-Conversion of Oscillations at the Excitation of Nonlinear Layered Media. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 27, 13-21. Retrieved from https://periodicals.karazin.ua/mia/article/view/14102
Issue
Section
Статті