Architecture, software implementation and results analyzing of the usage an intelligent tool for configuring microservice applications
Abstract
Actuality. Developing applications with a microservice architecture requires effective configuration management under varying load conditions, reliability, fault tolerance, and scalability requirements. This creates a need for intelligent adaptive configuration tools that can operate in near-real time mode.
Goal. To create an intelligent tool for adaptive management of MCA configurations with a decision-making module based on Case-Based Reasoning (CBR), design its architecture, make a software implementation, as well as experimentally evaluate the work on a test site and compare several CBR methods.
Research methods. The basic concepts of MSA configuration processes are clarified; a polygon with three services (auth, product, order) and performance requirements (≤1000 simultaneous requests, average latency ≤200 ms) is designed. Adaptive microservice configuration management is implemented as a microservice with REST API (FastAPI) and a precedent database (PostgreSQL); QoS, resource, "cost" and adaptability metrics are used. Five CBR methods are investigated: K-Nearest Neighbors, Weighted KNN, Feature-Based Retrieval, Cluster-Based Retrieval, Indexing & Hashing. A series of measurements of configuration selection time for a precedent database of 50–1000 records with averaging over 100 runs is conducted.
Results. The subsystem correctly identifies states and applies relevant configurations for different scenarios (low/medium/high/peak), meeting the requirement of a matching time of ≤0.5 s. The Indexing & Hashing method demonstrated the highest performance (≈27.6–50.3 ms for 50–1000 precedents); KNN has a linear time growth, and Weighted KNN provides controllability due to metric weights. The implemented web interface provides monitoring and manual/automatic mode of applying changes in real time.
Conclusions. The proposed architecture and software implementation of the CBR tool confirm the practical feasibility of adaptive configuration of the MCA and create a basis for managed solutions that are scaled by data. Further directions are outlined: evolution of the case base with online learning, multi-criteria optimization (performance/reliability/cost/energy efficiency), deeper integration with orchestrators and service mesh and increased explainability of solutions.
Downloads
References
/References
R. Su, X. Li, and D. Taibi, “From Microservice to Monolith: A Multivocal Literature Review,” Electronics, vol. 13, no. 8, p. 1452, Apr. 2024, doi: 10.3390/electronics13081452. Available: https://www.mdpi.com/2079-9292/13/8/1452
O. Pozdniakova, D. Mažeika, and A. Cholomskis, “SLA-Adaptive Threshold Adjustment for a Kubernetes Horizontal Pod Autoscaler,” Electronics, vol. 13, no. 7, 1242, 2024, doi: 10.3390/electronics13071242. Available: https://www.mdpi.com/2079-9292/13/7/1242
Zinov’ev, D.V. and Tkachuk, M.V. (2025), “Rozrobka ta doslidzhenniy algoritmichnoi modeli gla adaptivnogo upravlinnya konfiguratsiyami programnuh mikroservisiv” [Development and research of an algorithmic model for adaptive configuration management of software microservices], Information processing systems. 2024. № 2(177). - P. 116 –120. [in Ukrainian] Available: https://doi.org/10.30748/soi.2024.177.13
Zinov’ev, D., & Tkachuk, M. (2023). “Analiz, klasyfikatsiia ta testuvannia instrumentiv upravlinnia konfiguratsiiemi dlia programnykh mikroservisiv” [Analysis, classification and testing of configuration management tools for software microservices] Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 57, 32-41, doi: 10.26565/2304-6201-2023-57-03 Available: https://periodicals.karazin.ua/mia/article/view/23251
J. Figueira and C. Coutinho, “Developing Self-Adaptive Microservices,” Procedia Computer Science, vol. 232, pp. 264–273, 2024, doi: 10.1016/j.procs.2024.01.026. Available: https://www.sciencedirect.com/science/article/pii/S1877050924000267
W. Ma, R. Wang, Y. Gu, Q. Meng, H. Huang, S. Deng, and Y. Wu, “Multi-objective microservice deployment optimization via a knowledge-driven evolutionary algorithm,” Complex & Intelligent Systems, vol. 7, pp. 1153–1171, 2021, doi: 10.1007/s40747-020-00180-1. Available: https://link.springer.com/article/10.1007/s40747-020-00180-1
M. Niswar, R. A. Safruddin, A. Bustamin, and I. Aswad, “Performance Evaluation of Microservices Communication with REST, GraphQL, and gRPC,” International Journal of Electronics and Telecommunications, vol. 70, no. 2, pp. 429–436, Jun. 2024, doi: 10.24425/ijet.2024.149562. Available: https://ijet.ise.pw.edu.pl/index.php/ijet/article/view/10.24425-ijet.2024.149562
Yan and Z. Cheng, “A Review of the Development and Future Challenges of Case-Based Reasoning,” Applied Sciences, vol. 14, no. 16, art. 7130, 2024, doi: 10.3390/app14167130. Available: https://www.mdpi.com/2076-3417/14/16/7130
Su R., Li X., Taibi D. From Microservice to Monolith: A Multivocal Literature Review. Electronics. 2024. Vol. 13, No. 8. Art. 1452. DOI: 10.3390/electronics13081452. URL: https://www.mdpi.com/2079-9292/13/8/1452
Pozdniakova O.; Mažeika D.; Cholomskis A. SLA-Adaptive Threshold Adjustment for a Kubernetes Horizontal Pod Autoscaler. Electronics. 2024. Т. 13, № 7. 1242. DOI: 10.3390/electronics13071242. URL: https://www.mdpi.com/2079-9292/13/7/1242 // [2]
Зінов’єв Д.В., Ткачук М.В. Аналіз, класифікація та тестування інструментальних засобів для управління конфігураціями програмних мікросервісів. Вісник Харківського національного університету імені В.Н.Каразіна, сер. «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління». 2023. вип. 57. С.33-42, DOI: 10.26565/2304-6201-2023-57-03 URL: https://periodicals.karazin.ua/mia/article/view/23251 // [3]
Ткачук М. В., Зінов’єв Д.В. Розробка та дослідження алгоритмічної моделі для адаптивного управління конфігураціями програмних мікросервісів. Системи обробки інформації. 2024. № 2(177). - С. 116 –120, DOI:10.30748/soi.2024.177.13 URL: https://doi.org/10.30748/soi.2024.177.12 // [4]
Figueira J.; Coutinho C. Developing Self-Adaptive Microservices. Procedia Computer Science. 2024. Т. 232. С. 264–273. DOI: 10.1016/j.procs.2024.01.026. // [5] URL: https://www.sciencedirect.com/science/article/pii/S1877050924000267
Ma W.; Wang R.; Gu Y.; Meng Q.; Huang H.; Deng S.; Wu Y. Multi-objective microservice deployment optimization via a knowledge-driven evolutionary algorithm. Complex & Intelligent Systems. 2021. Т. 7. С. 1153–1171. DOI: 10.1007/s40747-020-00180-1. // [6] URL: https://link.springer.com/article/10.1007/s40747-020-00180-1
Niswar M.; Safruddin R. A.; Bustamin A.; Aswad I. Performance Evaluation of Microservices Communication with REST, GraphQL, and gRPC. International Journal of Electronics and Telecommunications. 2024. Т. 70, № 2. С. 429–436. DOI: 10.24425/ijet.2024.149562. URL: https://ijet.ise.pw.edu.pl/index.php/ijet/article/view/10.24425-ijet.2024.149562 /
Yan A.; Cheng Z. A Review of the Development and Future Challenges of Case-Based Reasoning. Applied Sciences. 2024. Т. 14, № 16. 7130. DOI: 10.3390/app14167130. URL: https://www.mdpi.com/2076-3417/14/16/7130