Two-sided iterative method based on the use of the Green's function in problems of numerical analysis of some electromechanical systems
Abstract
Relevance. The paper considers the problem of numerical analysis of a nonlinear boundary value problem that models an electrostatic microelectromechanical system under the action of external pressure. Microelectromechanical systems combine mechanical and electrical components of micron size and are used in automotive, aviation, and medicine. Electrostatic activation of these systems is crucial to micromirrors, microresonators, accelerometers, etc. The main limitation of electrostatic microelectromechanical systems is the pull-in instability, leading to system destabilization. It is proposed to investigate the model’s parameters and obtain their estimates to eliminate these limitations.
Goal. Using the methods of the theory of nonlinear operators in semi-ordered spaces, develop a method of two-sided approximations for solving the given problem.
Research methods. A nonlinear elliptic equation with the Laplace operator and a homogeneous boundary condition of the first kind represents the mathematical model of the electrostatic microelectromechanical system. Using the method of Green's functions, this differential problem is transferred to the equivalent integral equation of Hammerstein, which is analyzed by methods of the theory of nonlinear operators in semi-ordered spaces.
The results. The nonlinear operator's properties included in the Hammerstein equation were studied, and the conditions for the existence of a unique positive solution to the considered problem and the conditions for the convergence of two-sided approximations were obtained. For the proposed method of two-sided approximations, a posteriori estimation of the error and estimation of the number of iterations necessary to achieve the specified accuracy were also obtained.
Conclusions. Computational experiments demonstrate the operation and efficiency of the developed method for a test problem in a circular area with different values of model parameters. The results of computational experiments are presented as numerical and graphical information.
Downloads
References
/References
J. A. Pelesko, D. H. Bernstein Modeling MEMS and NEMS, Cleveland: CRC Press, 2002. 351 p.
A. H. Nayfeh, M. I. Younis “Reduced-order models for MEMS applications”, Nonlinear dynamics, vol. 41, no. 1, pp. 211-236, 2005.
M. V. Sidorov “Green-Rvachev’s quasi-function method for constructing two-sided approximations to positive solution of nonlinear boundary value problems”, Carpathian Mathematical Publications, vol. 10, no. 2, pp. 360-375, 2018.
J. A. Pelesko “Mathematical modeling of electrostatic MEMS with tailored dielectric properties”, SIAM Journal on Applied Mathematics, vol. 62, no. 3, pp. 888-908, 2002.
Y. Guo, Z. Pan and M. J. Ward “Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties”, SIAM Journal on Applied Mathematics, vol. 66, no. 1, pp. 309-338, 2005.
P. Esposito, N. Ghoussoub and Y. Guo Mathematical analysis of partial differential equations modeling electrostatic MEMS, Providence: American Mathematical Society, 2010. 262 p.
F. Lin and Y. Yang “Nonlinear non-local elliptic equation modeling electrostatic actuation”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2081, pp. 1323-1337, 2007.
J. R. Beckham, J. A. Pelesko “An electrostatic-elastic membrane system with an external pressure”, Mathematical and computer modelling, vol. 54, no. 11-12, pp. 2686-2708, 2011.
Y. Guo, Y. Zhang and F. Zhou “Singular behavior of an electrostatic–elastic membrane system with an external pressure”, Nonlinear Analysis, vol. 190, pp. 111611, 2020.
O. S. Konchakovska, M. V. Sidorov “The two-sided method in numerical analysis of one microelectromechanical system”, Bulletin of V. Karazin Kharkiv National University. Series «Mathematical Modelling. Information Technology. Automated Control Systems, vol. 39, pp. 33-41, 2018 [in Ukrainian].
V. I. Opojtsev, T. A. Khurodze Nonlinear Operators in Spaces with a Cone, Tbilisi, USSR: Izdatel’stvo Tbilisskogo Universiteta, 1984. 246 p. [in Russian].
M. A. Krasnosel’skij Positive Solutions of Operator Equations. Moscow: Fizmatgiz, 1962. 394 p. [in Russian].
Pelesko J. A., Bernstein D. H. Modeling MEMS and NEMS. Cleveland: CRC Press, 2002. 351 p.
Nayfeh A. H., Younis M. I., Abdel-Rahman E. M. Reduced-order models for MEMS applications. Nonlinear dynamics. 2005. Vol. 41, № 1. P. 211–236.
Sidorov M. V. Green-Rvachev’s quasi-function method for constructing two-sided approximations to positive solution of nonlinear boundary value problems. Carpathian Mathematical Publications. 2018. Vol. 10, № 2. P. 360–375.
Pelesko J. A. Mathematical modeling of electrostatic MEMS with tailored dielectric properties. SIAM Journal on Applied Mathematics. 2002. Vol. 62, № 3. P. 888–908.
Guo Y., Pan Z., Ward M. J. Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties. SIAM Journal on Applied Mathematics. 2005. Vol. 66, № 1. P. 309–338.
Esposito P., Ghoussoub N., Guo Y. Mathematical analysis of partial differential equations modeling electrostatic MEMS. Providence: American Mathematical Society, 2010. 262 p.
Lin F., Yang Y. Nonlinear non-local elliptic equation modeling electrostatic actuation. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2007. Vol. 463, № 2081. P. 1323–1337.
Beckham J. R., Pelesko J. A. An electrostatic-elastic membrane system with an external pressure. Mathematical and computer modelling. 2011. Vol. 54, №11–12. P. 2686–2708.
Guo Y., Zhang Y., Zhou F. Singular behavior of an electrostatic–elastic membrane system with an external pressure. Nonlinear Analysis. 2020. Vol. 190. P. 111611.
Кончаковська О. С., Сидоров М. В. Метод двобічних наближень у чисельному аналізі однієї мікроелектромеханічної системи. Вісник ХНУ ім. В.Н. Каразіна. Сер. Математичне моделювання. Інформаційні технології. Автоматизовані системи управління. 2018. Вип. 39. С. 33–41.
Опойцев В. И., Хуродзе Т. А. Нелинейные операторы в пространствах с конусом. Тбилиси: Изд-во Тбилис. ун-та, 1984. 246 с.
Красносельский М. А. Положительные решения операторных уравнений. М.: Физматгиз, 1962. 394 с.