Simplified methods of numerical modeling of Stefan's problem with explicit allocate of phase boundaries
Abstract
With the development of computer technology and progress in the field of modeling physical and chemical processes, methods of increasing the accuracy, as well as simplifying the algorithms and methods for calculating mathematical models, become especially relevant. This work is devoted to the Stefan problem, to which the problems of heat transfer with a liquid-solid phase transition and diffusion mass transfer with phase transformations in a solid (decomposition of solid solutions, deposition of diffusion protective coatings) are reduced. The features of numerical modeling of the Stefan problem in multiphase systems are considered. The possibilities and disadvantages of existing numerical methods for solving this problem are analyzed. Three new methods are proposed with the allocate of moving interphase boundaries, on which the grid function suffers a discontinuity of the first kind, which greatly simplify the algorithm for the numerical solution of this problem. The comparison of the proposed algorithms with each other and with existing numerical methods has been carried out on a model problem of reaction diffusion in a solid, which is the Stefan problem in multiphase systems by using boundary and initial conditions that allow its analytical solution. The simulation of two existing and three proposed methods shows that a) the equilibrium concentration method leads to significant errors in the early stages of the diffusion process. But over time, the general properties of diffusion processes lead to a reduction of these errors. Therefore, this method is proposed to calculate the final state of long-term diffusion processes; b) methods of linear interpolation and conserved gradient in practice are not inferior in accuracy to generally accepted methods and can be used to solve the Stefan problems in a multidimensional multiphase setting.
Downloads
References
/References
A.N. Tikhonov, A.A.Samarskiy. Equations of mathematical physics. Moscow: Nauka, 1977,755p. [in Russian] http://mat.net.ua/mat/Tihonov_Samarskiy-Marfizika.htm
E.A. Cheblakova. “Simulation of convection in regions with free boundaries”. Computational technologies. Vol. 5, no. 6. pp. 87-98, 2000. [in Russian] https://cyberleninka.ru/article/n/ modelirovanie-konvektsii-v-oblastyah-so-svobodnymi-granitsami
G.I. Kurbatova. “On the calculation of glaciation of surfaces in sea water”. Bulletin of St. Petersburg University series “Applied Mathematics. Computer science. Management Processes ". Vol. 14, Iss. 3. pp. 186–199, 2018. [in Russian] http://www.mathnet.ru/php/archive.phtml?wshow=paper &jrnid=vspui&paperid=369&option_lang=rus
M.K. Khasanov, M.V. Stolpovsky. “Numerical solution of the Stefan problem with several boundaries of phase transitions by the method of catching the front in a grid node”. Fundamental research. No. 11-4. pp. 748-752, 2015. [in Russian] https://elibrary.ru/item.asp?id=25098376
O.N. Koroleva, V. I.Mazhukin. “Mathematical modeling of laser melting and evaporation of multilayer materials”. Journal of Computational Mathematics and Mathematical Physicsvol. Vol. 46, No. 5. pp. 910-924, 2006. [in Russian] http://www.mathnet.ru/links/ 3dce284e6656ef1e1aafd2e7b16bcf40/zvmmf472.pdf
D.I. Safronov, A.I. Panov, A.V. Samodolov. “Solving the heat equation on unstructured Dirichlet grids using an economical scheme”. Atomic Science and Technology Issues, series Mathematical modeling of physical processes. No. 4, pp. 3-11, 2009. [in Russian] https://elibrary.ru/item.asp?id= 13918457
N.A. Okulov. “On a numerical method for solving one-dimensional problems of the Stefan type”. Computational Methods and Programming, Vol. 12, pp. 238-246, 2011. [in Russian] http:// www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vmp&paperid=191&option_lang=rus
S.I. Kulikov S.I., A.I. Nesterenko, N.G. Nesterenko. “The solution of the two-dimensional Stefan problem in a multiply connected domane”. Comput. Maths Math. Phys. Vol. 33, No. 3, pp. 365-375, 1993. http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=2746&option_lang=eng
Тихонов А.Н., Самарський А.А. Уравнения математической физики. М.: Наука, 1977. 735 с. http://mat.net.ua/mat/Tihonov_Samarskiy-Marfizika.htm
Чеблакова Е. А. Моделирование конвекции в областях со свободными границами. Вычислительные технологии. 2000. Том 5, № 6. С.87-98. https://cyberleninka.ru/article/n/ modelirovanie-konvektsii-v-oblastyah-so-svobodnymi-granitsami
Курбатова Г.И. О расчете оледенения поверхностей в морской воде. Вестник Санкт-Петербургского университета серия «Прикладная математика. Информатика. Процессы управления». 2018. Т. 14, Вып. 3. С. 186–199. [in Russian] http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vspui&paperid=369&option_lang=rus
Хасанов М.К., Столповский М.В. Численное решение задачи Стефана с несколькими границами фазовых переходов методом ловли фронта в узел сетки. Фундаментальные исследования. 2015. № 11-4. С. 748-752. [ in Russian] https://elibrary.ru/item.asp?id=25098376
Королева О.Н., Мажукин В.И. Математическое моделирование лазерного плавления и испарения многослойных материалов. ЖВМиМФ. 2006. т.46, № 5. С. 910-924. [ in Russian] http://www.mathnet.ru/links/3dce284e6656ef1e1aafd2e7b16bcf40/zvmmf472.pdf
Сафронов Д.И., Панов А.И., Самодолов А.В. Решение уравнения теплопроводности на неструктурированых сетках Дирихле с использованием экономичной схемы. Вопросы атомной науки и техники, серия Математическое моделирование физических процессов. 2009. вып. 4, С. 3-11. [ in Russian] https://elibrary.ru/item.asp?id=13918457
Окулов Н.А. Об одном численном методе решения одномерных задач типа Стефана. Вычислительные методы и программирование, 2011, т. 12. С. 238-246. [ in Russian] http:// www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vmp&paperid=191&option_lang=rus
Kulikov S.I., Nesterenko A.I., Nesterenko N.G. The solution of the two-dimensional Stefan problem in a multiply connected domane. Comput. Maths Math. Phys, 1993.Vol. 33, No. 3. P. 365-375, http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=2746&option_lang=eng