The method of integral equations in the problems of studying oscillations of shells partially filled with liquid
Abstract
G-force reaching several g affect the stability of the launch vehicle in the launching phase. The mathematical modeling methods are used to study the longitudinal vibration stability of liquid-fueled launch vehicles in the launching phase. The paper presents the modeling of small oscillations of fluid motion in a rigid, partially filled shell of rotation. The modeling is based on the developed mathematical model: fluid is supposed to be ideal and incompressible, fluid motion being vortexless, velocity potential gradient being fluid velocity. The conditions for the velocity potential at the boundaries of the computational domain are determined. The kinematic boundary condition and dynamic boundary condition on the free surface and nonpermeability condition on the bottom and side surfaces of the tank are fulfilled. The solution of the differential equations system for the boundary conditions has been obtained. The liquid sloshing in a low gravity has been investigated and the boundary conditions have been generalized. In the dynamic boundary condition the surface tension is accounted for. The assumed mode method has been developed to solve problems of free and forced oscillations of shell structures with compartments filled with liquid. The system of differential equations relative to the elastic movements of the structure and the active liquid pressure is obtained. For its solution three sets of basic functions have been used. The gravitational component in the singular equation system in the problem of sloshing in a rigid shell is taken into account. The cases of control points being positioned on the liquid free surface, as well as on the shell surface are considered. The solution of the system of equations determines the velocity potential.
Downloads
References
/References
O’Neil, W.J. Project Galileo - The Jupiter Mission. In: Barbieri C., Rahe J.H., Johnson T.V. & Sohus A.M. (eds) The Three Galileos: The Man, the Spacecraft, the Telescope. Astrophysics and Space Science Library, Springer, Dordrecht. 1997, 220, P. 17-23. URL: https://link.springer.com/chapter/10.1007/978-94-015-8790-7_8 (Last accessed: 22.11.2020).
Silveira, A.M., Stephens, D.G., Leonard, H.W. An Experimental Investigation of Liquid Oscillation in Tanks with Various Baffles, NASA Technical Note D-715, Washington: National Aeronautics And Space Administration, 1961, P. 5-24. URL: https://apps.dtic.mil/sti/citations/AD0256026 (Last accessed: 22.11.2020).
Abramson, H.N. Slosh Suppression, NASA Technical Report SP-8031, Washington: National Aeronautics And Space Administration, 1969, P. 1-23. URL: http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4065/NASADesignSPs/sp8031.pdf (Last accessed: 22.11.2020).
Naуfeh, Ali Hasan. Third-harmonic resonance in the interaction of capillary and gravity weaves, Journal of Fluid Mechanics, 1971, 48 (2), P. 385–395.
Goldrick, L. F. Mc. An experiment on second-order capillary gravity resonant wave interaction, Journal of Fluid Mechanics, 1970, 40(2), P. 251–271. URL: https://doi.org/10.1017/s0022112071001630 (Last accessed: 22.11.2020).
Strelnikova E., Kriutchenko D., Gnitko V., Degtyarev K., Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations. Engineering Analysis with Boundary Elements. 2020. Vol. 111, P. 78-87. DOI: doi.org/10.1016/j.enganabound.2019.10.008. URL: http://www.sciencedirect.com/science/article/pii/S0955799719306149 (Last accessed: 22.11.2020).
Ibrahim R. A. Liquid sloshing dynamics: theory and applications. Cambridge: Cambridge University Press, 2005. DOI:10.1017/CBO9780511536656.
Gnitko V., Degtyariov K., Karaiev A., Strelnikova E. Singular boundary method in free vibration analysis of compound liquid-filled shells. WIT Transactions on Engineering Sciences. 2019. Vol. 126, P.189-200. DOI: 10.2495/BE420171. URL: https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/126/37317 (Last accessed: 22.11.2020)
Strelnikova A., Choudhary N., Kriutchenko D., Gnitko V., Tonkonozhenko A. Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations Engineering Analysis with Boundary Elements. 2020. Vol. 120, P. 13-27. DOI: doi.org/10.1016/j.enganabound.2020.07.024. URL: http://www.sciencedirect.com/science/article/pii/S0955799720302009 (Last accessed: 22.11.2020).
Eseleva E.V. Gnitko V.I. Strelnikova E.A. Natural oscillations pressure vessel interacting with the liquid. Journal of Mechanical Engineering. 2006. Vol.9. №1, P.105 - 118. [in Russian]
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering, 2018, Vol.3, No.1, P.15-52.
Brebbia C.A, Telles J.C.F, Wrobel L.C. Boundary element techniques: theory and applications in engineering. Springer-Verlag Berlin, Heidelberg, 1984, P.15-52. DOI: https://doi.org/10.1007/978-3-642-48860-3.
Karaiev A., Strelnikova E. Singular integrals in axisymmetric problems of elastostatics. International Journal of Modeling, Simulation, and Scientific Computing. 2020. Vol. 11, № 1. DOI: https://doi.org/10.1142/S1793962320500038. URL: https://www.researchgate.net/publication/338174729_Singular_Integrals_in_Axisymmetric_Problems_of_Elastostatics (Last accessed: 25.11.2020).
Strelnikova E., Medvedovskaya T. Free Hydroelastic Vibrations of Hydroturbine Head Covers Intern. J. Eng. and Advanced Research Technology (IJEART). 2015. Vol. 1, No 1, P. 45–50. DOI: 10.13140/RG.2.1.3527.4961.
Butikov E. Analytical expressions for stability regions in the Ince–Strutt diagram of Mathieu equation. American Journal of Physics, 2018, Vol.86, P. 257–267. DOI: https://doi.org/10.1119/1.5021895. URL: https://aapt.scitation.org/doi/pdf/10.1119/1.5021895 (Last accessed: 25.11.2020).
Kolukula S. S., Chellapandi P. Dynamic stability of plane free surface of liquid in axisymmetric tanks, Advances in Acoustics and Vibration, 2013, P. 16. DOI: 10.1155 / 2013/298458. URL: https://www.researchgate.net/publication/258391808_Dynamic_Stability_of_Plane_Free_SurfaSu_of_Liquid_in_Axisymmetric_Tanks (Last accessed: 25.11.2020).
Landau L. D., Lifshitz E. M. Fiuid Mechanics, 2nd ed., Pergamon, New York, 1987, P. 238-250. URL: https://users-phys.au.dk/srf/hydro/Landau+Lifschitz.pdf (Last accessed: 26.11.2020).
Myronenko M.L. Forced Vibrations of Fuel Tanks at Different Bond’s Numbers. Applied Questions of Mathematical Modelling, 2019, Vol. 2, №2, P. 50-57. [in Ukrainian] URL: https://doi.org/10.32782/2618-0340/2019.2-2.4 (Last accessed: 25.11.2020).
O’Neil, W.J. Project Galileo - The Jupiter Mission. In: Barbieri C., Rahe J.H., Johnson T.V. & Sohus A.M. (eds) The Three Galileos: The Man, the Spacecraft, the Telescope. Astrophysics and Space Science Library, Springer, Dordrecht. 1997, 220. P. 17-23. URL: https://link.springer.com/chapter/10.1007/978-94-015-8790-7_8 (дата звернення: 22.11.2020).
Silveira, A.M., Stephens, D.G., Leonard, H.W. An Experimental Investigation of Liquid Oscillation in Tanks with Various Baffles, NASA Technical Note D-715, Washington: National Aeronautics And Space Administration, 1961. P. 5-24. URL: https://apps.dtic.mil/sti/citations/AD0256026 (дата звернення: 22.11.2020).
Abramson, H.N. Slosh Suppression, NASA Technical Report SP-8031, Washington: National Aeronautics And Space Administration, 1969. P. 1-23. URL: http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4065/NASADesignSPs/sp8031.pdf (дата звернення: 22.11.2020).
Naуfeh, Ali Hasan. Third-harmonic resonance in the interaction of capillary and gravity weaves, Journal of Fluid Mechanics, 1971, 48 (2). P. 385–395.
Goldrick, L. F. Mc. An experiment on second-order capillary gravity resonant wave interaction, Journal of Fluid Mechanics, 1970, 40(2). P. 251–271. URL: https://doi.org/10.1017/s0022112071001630 (дата звернення: 22.11.2020).
Strelnikova E., Kriutchenko D., Gnitko V., Degtyarev K., Boundary element method in nonlinear sloshing analysis for shells of revolution under longitudinal excitations. Engineering Analysis with Boundary Elements. 2020. Vol. 111. P. 78-87. DOI: doi.org/10.1016/j.enganabound.2019.10.008. URL: http://www.sciencedirect.com/science/article/pii/S0955799719306149 (дата звернення: 22.11.2020).
Ibrahim R. A. Liquid sloshing dynamics: theory and applications. Cambridge: Cambridge University Press, 2005. DOI:10.1017/CBO9780511536656.
Gnitko V., Degtyariov K., Karaiev A., Strelnikova E. Singular boundary method in free vibration analysis of compound liquid-filled shells. WIT Transactions on Engineering Sciences. 2019. Vol. 126. P.189-200. DOI: 10.2495/BE420171. URL: https://www.witpress.com/elibrary/wit-transactions-on-engineering-sciences/126/37317 (дата звернення: 22.11.2020)
Strelnikova A., Choudhary N., Kriutchenko D., Gnitko V., Tonkonozhenko A. Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations Engineering Analysis with Boundary Elements. 2020. Vol. 120. P. 13-27. DOI: doi.org/10.1016/j.enganabound.2020.07.024. URL: http://www.sciencedirect.com/science/article/pii/S0955799720302009 (дата звернення: 22.11.2020).
Еселева Е.В. Гнитько В.И., Стрельникова Е.А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Пробл. машиностроения. 2006. Т.9. №1. С.105 - 118.
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles J. Modern Technology & Engineering, 2018, Vol.3, No.1. P.15-52.
Brebbia C.A, Telles J.C.F, Wrobel L.C. Boundary element techniques: theory and applications in engineering. Springer-Verlag Berlin, Heidelberg, 1984. P.15-52. DOI: https://doi.org/10.1007/978-3-642-48860-3.
Karaiev A., Strelnikova E. Singular integrals in axisymmetric problems of elastostatics. International Journal of Modeling, Simulation, and Scientific Computing. 2020. Vol. 11, № 1. DOI: https://doi.org/10.1142/S1793962320500038. URL: https://www.researchgate.net/publication/338174729_Singular_Integrals_in_Axisymmetric_Problems_of_Elastostatics (дата звернення: 25.11.2020).
Strelnikova E., Medvedovskaya T. Free Hydroelastic Vibrations of Hydroturbine Head Covers Intern. J. Eng. and Advanced Research Technology (IJEART). 2015. Vol. 1, No 1. P. 45–50. URL: https://doi.org/10.13140/RG.2.1.3527.4961.
Butikov E. Analytical expressions for stability regions in the Ince–Strutt diagram of Mathieu equation. American Journal of Physics, 2018, Vol.86. P. 257–267. DOI: https://doi.org/10.1119/1.5021895. URL: https://aapt.scitation.org/doi/pdf/10.1119/1.5021895 (дата звернення: 25.11.2020).
Kolukula S. S., Chellapandi P. Dynamic stability of plane free surface of liquid in axisymmetric tanks, Advances in Acoustics and Vibration, 2013. P. 16. DOI: 10.1155 / 2013/298458. URL: https://www.researchgate.net/publication/258391808_Dynamic_Stability_of_Plane_Free_SurfaSu_of_Liquid_in_Axisymmetric_Tanks (дата звернення: 25.11.2020).
Landau L. D., Lifshitz E. M. Fiuid Mechanics, 2nd ed., Pergamon, New York, 1987. P. 238-250. URL: https://users-phys.au.dk/srf/hydro/Landau+Lifschitz.pdf (дата звернення: 26.11.2020).
Мироненко М. Л. Вимушені коливання паливних баків при різних числах Бонда. Прикладні питання математичного моделювання, 2019, том 2, №2. С. 50-57. URL: https://doi.org/10.32782/2618-0340/2019.2-2.4 (дата звернення: 25.11.2020).