Prediction of the charge carriers stationary distribution in the active region of the p-i-n structures by the perturbation theory methods
Abstract
The p-i-n diode is an electronic device that is widely used for switching a microwave signals. The theory of the p-i-n diode is based on linear mathematical models that satisfactorily explain the diodes switching properties at low microwave power levels. The developed methods for modeling the corresponding devices on p-i-n diodes turned out to be untenable when studying the properties of diodes and diode structures under the with high-power microwave signals (typical for high-power switches and protective devices). Here are faced with the need to take into account the mutual influence of diffusion-drift, wave, thermal processes, in which the nonlinear components of the mathematical models will dominate. The development of the computer technology and the corresponding mathematical methods (for example, the perturbation theory methods) determines the possibility of improving the existing p-i-n diodes mathematical models and the possibility of the new approaches developing to the analysis of the nonlinear processes in p-i-n diodes and similar electronic devices. The goal of this paper is to improve the mathematical model and methods for predicting the electron-hole plasma stationary distribution in the active region of surface-oriented p-i-n structures based on the use of the boundary functions method. The mathematical model of the electron-hole plasma stationary distribution in the integrated surface-oriented p-i-n structures active region is constructed in the form of the nonlinear singularly perturbed boundary value problem for the system of equations of the charge carriers current continuity and Poisson. An approximate solution of the corresponding boundary value problem is found in the form of the asymptotic series leading terms in powers of a small parameter. A scheme for finding the problem solution is proposed, which automatically includes the classical formulations of problems for modeling the p-i-n structures characteristics and allows you to make significant amendments to the solution. This ensures an increase in the level of adequacy of modeling and understanding of the features of a number of physical processes (diffusion-drift, recombinant, injection) in the p-i-n diodes active region. We consider the proposed approach a promising tool for studying nonlinear thermal, diffusion-drift, generation-recombination stationary and non-stationary processes occurring in the p-i-n structures elements under the action of the external microwave radiation, and predicting new physical effects in the studied systems, for example, due to the influence of local surface and bulk defects on the p-i-n structures characteristics.
Downloads
References
/References
Sze S., Kwok K. Physics of Semiconductor Devices . New York: Wiley-Interscience, 2006. 815 р.
Gusyatiner M.S. Gorbachov A.I. Semiconductor microwave diodes. Moscow: Radio and communication, 1985. 262 p. [in Russian]
Lebedev I. V., Shnitnikov A. S., Dyakov I. V., Borisova N. A. Impedance properties of higi-frequency PIN diodes. Solid-State Electronics, 1998. Vol. 41, issue 1, pp. 121-128.
Grimalsky V. V., Kishenko Ya. I., Koshevaya S. V., Moroz I. P. The Interaction of Powerful Electromagnetic Waves With Integrated p-i-n-structures. Doc. of Int. Symp. "Physics and Engineering of Mm and Submm Waves”, June 7-10, 1994. Kharkov, Ukraine, vol.1, pp. 238-239.
Haine M.E., Rose F.W.G. On the conductance of p-i-n junctions at high microwave fields. Solid-State Electron, 1972. Vol.15, issue 6, pp.687-705.
Adirovich E. I., Karageorgiy-Alkalaev P. M., Leyderman A. Yu. Double injection currents in semiconductors. Moscow: Soviet radio, 1978. 320 p. [in Russian]
Bonch-Bruevich V. L., Kalashnikov S. G. Physics of Semiconductors. Moscow: Nauka, 1990. 685 p. [in Russian]
Tikhonov A. N. Systems of differential equations containing small parameters multiplying some of the derivatives. Mat. Sb., 1952.Vol. 31(73), issue 3, pp. 575-586. [in Russian]
Vishik M. I., Lusternik L. A. Regular degeneration and boundary layer for linear differential equations with small parameter. UMN, 1957. Vol. 12, issue 5 (77), pp. 3-122. [in Russian]
Vasilieva A. B., Butuzov V. F. Asymptotic methods in the theory of singular perturbations. – Moscow: Vissh. shkola, 1990. 208 p. [in Russian]
Bomba A. Ya., Prysyagnuk I. M., Prysyagnuk O. V. Methods of perturbation theory for predicting heat and mass transfer processes in porous and microporous media. Rivne: O.Zen, 2017. 291 p. [in Ukrainian]
Bomba A. Ya. On the asymptotic method of approximate solution of one mass transfer problem during filtration in a porous medium. Ukrainian Mathematical Journal, 1982. Vol.34, issue 4, pp.37-40. [in Ukrainian]
Smith D.R. Singular-Perturbation Theory. An Introduction with Applications. Cambridge: Cambridge Univ. Press, 1985. 520 p.
Belyanin M. P. On the asymptotic solution of a model of a (p − n) junction. Computational Mathematics and Mathematical Physics, 1986. Vol.26, issue 2, pp.306-311. [in Russian]
Vasilieva A. B., Stelmah V. G. Singularly perturbed systems of the theory of semiconductor devices. Mathematics and Mathematical Physics, 1977. Vol.17, issue 2, pp.339-348. [in Russian]
Sze S., Kwok K. Physics of Semiconductor Devices . New York: Wiley-Interscience, 2006. 815 р.
Гусятинер М.С. Горбачев А.И. Полупроводниковые сверхвысокочастотные диоды. М.: Радио и связь, 1985. 262 с.
Lebedev I. V., Shnitnikov A. S., Dyakov I. V., Borisova N. A. Impedance properties of higi-frequency PIN diodes. Solid-State Electronics, 1998. Vol. 41, № 1, pp. 121-128.
Grimalsky V. V., Kishenko Ya. I., Koshevaya S. V., Moroz I. P. The Interaction of Powerful Electromagnetic Waves With Integrated p-i-n-structures. Doc. of Int. Symp. "Physics and Engineering of Mm and Submm Waves”, June 7-10, 1994. Kharkov, Ukraine, vol.1, pp. 238-239.
Haine M.E., Rose F.W.G. On the conductance of p-i-n junctions at high microwave fields. Solid-State Electron, 1972. Vol.15, №.6, pp.687-705.
Адирович Э. И., Карагеоргий-Алкалаев П. М., Лейдерман А. Ю. Токи двойной инжекции в полупроводниках . Под ред. Гальперина. М.: Советское радио, 1978. 320 с.
Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. М.: Наука, 1990. 685 с.
Тихонов А. Н. Системы дифференциальных уравнений, содержащие малые параметры. Математический сборник, 1952. Т. 31(73), № 3, С. 575-586.
Вишик М. И., Люстерник Л. А. Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром. УМН, 1957. Т.12, №5, С. 3-122.
Васильева А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. М.: Высш. шк., 1990. 208 с.
Бомба А.Я., Присяжнюк І.М., Присяжнюк О.В. Методи теорії збурень прогнозування процесів тепломасоперенесення в пористих та мікропористих середовищах. Рівне: О.Зень, 2017. 291 с.
Бомба А.Я. Про асимптотичний метод наближеного розв’язання однієї задачі масопереносу при фільтрації в пористому середовищі. Український математичний журнал, 1982. Т.34, № 4, С.37-40.
Smith D.R. Singular-Perturbation Theory. An Introduction with Applications. Cambridge: Cambridge Univ. Press, 1985. 520 p.
Белянин М.П. Об асимптотическом решении одной модели p-n- перехода. Вычислительная математика и математическая физика, 1986. Т.26, №2, С.306-311.
Васильева А.Б., Стельмах В.Г. Сингулярно возмущенные системы теории полупроводниковых приборов. Вычислительная математика и математическая физика, 1977. Т.17, №2, С.339-348.