Simulation of liquid movement in cylindrical shells
Abstract
The motion of a viscous incompressible fluid with constant coefficients in case of the Hagen-Poiseuille flow is considered in this paper. The equation of motion of the elastic shell in the absence of external perturbations is obtained on the basis of the Ostrogradsky-Hamilton principle. Assuming the Hagen-Poiseuille flow, the expression for the kinetic energy of a moving fluid in a nanotube is obtained, and the equations to determine oscillation frequencies of a tube with a fluid are constructed, that allows investigating the stability of motion. Using the Poiseuille formula it is possible to effectively determine the movement of fluid in tubes. According to the Bernoulli's equation, when the fluid is stationary along a rectilinear horizontal tube of a constant cross-section, the fluid pressure must be the same along the entire length of a tube.
In recent years, a new trend associated with nanotechnology has been developing in hydromechanics. The relevance of modeling fluid flow through micro- and nanotubes is confirmed by the results of many experiments conducted over two decades. A nanotube can be represented as a graphite plane rolled into a cylinder (hollow tube), which is a set of regular hexagons with carbon atoms in the vertices, and having the diameter of several nanometers. The fluid flow through micro and nanotubes is a common phenomenon in various biological and technical devices and systems and therefore is of great importance. Consequently, flows in nanometer-sized channels are being studied intensively. The numerical values of the oscillation frequencies of the elastic cylindrical shell for the cases of absence of fluid and the presence of fluid with different pressure values have been obtained.
Downloads
References
/References
Sivukhin D.V. General course of physics. T. I. - Moscow: Nauka, 1996. Ch. XII, §§ 93, 94, 95. https://learn.ztu.edu.ua/pluginfile.php/93163/mod_resource/content/1/Sivuhin_D.V._Kurs_obwej_fiziki._Tom_2-arpg75zl9bj.pdf [in Russian]
Khaikin S.E. Physical foundations of mechanics. - M .: Nauka, 1971. Ch. XVI, §§ 123, 124. https://www.twirpx.com/file/1922952/ [in Russian]
Strelkov S.P. Mechanics. - M .: Nauka, 1975. §§ 100-106. https://ikfia.ysn.ru/wp-content/uploads/2018/01/Strelkov1975ru.pdf [in Russian]
Eric Lauga,Willow R. DiLuzio, George M. Whitesides, and Howard A. Stone. Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophys J. 2006 Jan 15; 90(2): 400–412. doi: 10.1529/biophysj.105.069401 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367047/ [in English]
Darrigol, O. Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier-Stokes Equation. Arch Hist Exact Sc. 56, 95–150 (2002). https://doi.org/10.1007/s004070200000 https://link.springer.com/article/10.1007/s004070200000 [in English]
Yifei Mo, Kevin T. Turner, Izabela Szlufarska. Friction laws at the nanoscale. Nature, Vol 457| 26 February 2009| doi:10.1038/nature07748. https://pubmed.ncbi.nlm.nih.gov/19242472/ [in English]
Toshiaki Natsuki and Morinobu End. Vibration analysis of embedded carbon nanotubes using wave propagation approach. Journal of Applied Physics 99, 034311 (2006); https://doi.org/10.1063/1.2170418 https://aip.scitation.org/doi/abs/10.1063/1.2170418 [in English]
Wang, Q., Varadan, V.K., Quek, S.T. (2006-09-04). Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Physics Letters, Section A: General, Atomic and Solid StatePhysics357(2):30-135.ScholarBank@NUSRepository. https://doi.org/10.1016/j.physleta.2006.04.026 https://scholarbank.nus.edu.sg/handle/10635/66179 [in English]
S. Abdullaeva, F. Nagiyev Nanohydromechanics, 2011, Baku. // Dyachkov P.N. // Carbon nanotubes. Materials for computers of the XXI century // Nature. 2000. No. 11. P.23-30. http://anl.az/el_ru/kniqi/2013/2-815097.pdf [in Russian]
Kingsep A.S., Lokshin G.R., Olkhov O.A. Fundamentals of Physics. T. 1. Mechanics, electricity and magnetism, oscillations and waves, wave optics. - M .: Fizmatlit, 2001. Part 1. Ch. eight. https://e.lanbook.com/book/2684 [in Russian]
Baikov V.I., Pavlyukevich N.V., Fedotov A.K., Shnip A.I. Minsk: A.V.Lykov Institute of Heat and Mass Transfer of the National Academy of Sciences of Belarus, 2014 .-- 370 p. https://www.itmo.by/doc/publication/full_teplofiz2.pdf [in Russian]
Reza Bahaadini, Ali Reza Saidi and Mohammad Hosseini. Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory. Journal of Vibration and Control 2019, Vol. 25(1) 203–218, doi.org/10.1177/1077546318774242 https://journals.sagepub.com/doi/full/10.1177/1077546318774242 [in English]
Degtyarev, K., Glushich, P., Gnitko, V., Strelnikova, E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells // International Journal of Modern Physics and Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 10.13140/RG.2.1.1857.5209 https://www.researchgate.net/publication/280728146_Numerical_Simulation_of_Free_Liquid-Induced_Vibrations_in_Elastic_Shells
Medvedovskaya T. Free hydroelastic vibrations of hydroturbine head covers/ Medvedovskaya T., Strelnikova E., Medvedyeva K // Int. J. Eng. and Advanced Research Technology.– 2015.– Vol. 1.– No 1.– P.45-50. https://journal-me.com/archive-ukr/vol21-2018-iss1-paper5/?print=print
Сивухин Д.В. Общий курс физики. Т. I. — М.: Наука, 1996. Гл. ХII, §§ 93, 94, 95. https://learn.ztu.edu.ua/pluginfile.php/93163/mod_resource/content/1/Sivuhin_D.V._Kurs_obwej_fiziki._Tom_2-arpg75zl9bj.pdf
Хайкин С.Э. Физические основы механики. — М.: Наука, 1971. Гл. ХVI, §§ 123, 124. https://www.twirpx.com/file/1922952/
Стрелков С.П. Механика. — М.: Наука, 1975. §§ 100–106. https://ikfia.ysn.ru/wp-content/uploads/2018/01/Strelkov1975ru.pdf
Eric Lauga,Willow R. DiLuzio, George M. Whitesides, and Howard A. Stone. Swimming in Circles: Motion of Bacteria near Solid Boundaries. Biophys J. 2006 Jan 15; 90(2): 400–412. doi: 10.1529/biophysj.105.069401 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367047/
Darrigol, O. Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier-Stokes Equation. Arch Hist Exact Sc. 56, 95–150 (2002). https://doi.org/10.1007/s004070200000 https://link.springer.com/article/10.1007/s004070200000
Yifei Mo, Kevin T. Turner, Izabela Szlufarska. Friction laws at the nanoscale. Nature, Vol 457| 26 February 2009| doi:10.1038/nature07748. https://pubmed.ncbi.nlm.nih.gov/19242472/
Toshiaki Natsuki and Morinobu End. Vibration analysis of embedded carbon nanotubes using wave propagation approach. Journal of Applied Physics 99, 034311 (2006); https://doi.org/10.1063/1.2170418 https://aip.scitation.org/doi/abs/10.1063/1.2170418
Wang, Q., Varadan, V.K., Quek, S.T. (2006-09-04). Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Physics Letters, Section A: General, Atomic and Solid State Physics 357(2) :30-135. ScholarBank@NUS Repository. https://doi.org/10.1016/j.physleta.2006.04.026 https://scholarbank.nus.edu.sg/handle/10635/66179
С.Абдуллаева, Ф.Нагиев Наногидромеханика, 2011,Баку. //Дьячков П.Н// Углеродные нанотрубки. Материалы для компьютеров XXI века // Природа. 2000. №11. С.23-30. http://anl.az/el_ru/kniqi/2013/2-815097.pdf
Кингсеп А.С., Локшин Г.Р., Ольхов О.А. Основы физики. Т. 1. Механика, электричество и магнетизм, колебания и волны, волновая оптика. — М.: Физматлит, 2001. Ч. 1. Гл. 8. https://e.lanbook.com/book/2684
Байков В.И., Павлюкевич Н. В., Федотов А.К., Шнип А.И. Минск: Институт тепло- и массообмена имени А. В. Лыкова НАН Беларуси, 2014. – 370 с. https://www.itmo.by/doc/publication/full_teplofiz2.pdf
Reza Bahaadini, Ali Reza Saidi and Mohammad Hosseini. Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory. Journal of Vibration and Control 2019, Vol. 25(1) 203–218, doi.org/10.1177/1077546318774242 https://journals.sagepub.com/doi/full/10.1177/1077546318774242
Degtyarev, K., Glushich, P., Gnitko, V., Strelnikova, E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells // International Journal of Modern Physics and Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 10.13140/RG.2.1.1857.5209 https://www. researchgate. net/publication/280728146_Numerical_Simulation_of_Free_Liquid-Induced_ Vibrations_ in_ Elastic_ Shells
Medvedovskaya T. Free hydroelastic vibrations of hydroturbine head covers/ Medvedovskaya T., Strelnikova E., Medvedyeva K // Int. J. Eng. and Advanced Research Technology.– 2015.– Vol. 1.– No 1.– P.45-50. DOI: 10.13140/RG.2.1.3527.4961 https://journal-me.com/archive-ukr/vol21-2018-iss1-paper5/?print=print