Finite element method in determining the destructive load on the perforated shell under short-term forces
Abstract
Stress-strain state of cylindrical shells with periodic system of openings is considered. It is supposed that the shell moves under the influence of short-term intense load. The method of determining destructive loads in case of short-term force effects on a perforated cylindrical shell is proposed. The problem of determining the shell motion is considered in the elastic-plastic formulation. It is supposed that when the equivalent loads are equal to or exceed the yield strength; plastic deformations begin to develop in the elastic body. The zone of plastic deformations is specified at each step of loading. The total deformation is presented as the sum of elastic and plastic components. Elastic deformations are expressed through elastic displacements with Cauchy ratios. Equilibrium conditions are applied in stresses. The elastic component results in to Lamé equations in displacements, unknown plastic stresses take the form of additional loads and are taken into account in the right part of the differential equations of motion. The theories of small elastic-plastic deformations and plastic flows are applied. The law of plastic flow is chosen, a multi-linear or bilinear tensile diagram characterizing the zone of plastic flow is given, and it is assumed that components of plastic deviator deformations are directly proportional to the components of the stress deviator. The finite element method is used to solve the system of differential equations of motion. Spatial 20-nodes finite elements with quadratic approximation of unknown motion inside elements are used. Studying the convergence of the method depending on the number of elements has been performed. The estimation of the moment of the beginning of destruction is obtained.
Downloads
References
/References
Mossakovsky V.I., Gudramovich V.S., Makeev E.M. Contact interactions of elements of shell structures / ed. V. L. Rvachev. Kiev, 1988. 288 p. URL: http://www.pmi.lv/libdb/authors/view/2239
Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. URL: https://link.springer.com/article/10.1007/s10778-009-0224-5
Ilyushin A.A. Proc. in 4 volumes. M., 2009. V. 4. Modeling of dynamic processes in solids and engineering applications. 526 p. URL: https://www.livelib.ru/book/1000815977
Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. URL: https://doi.org/10.33136/stma2020.01.044
Hudramovich V. S., Hart E. L., Strunin K. A. Numerical simulation of behavior of elastic structures with local stiffening. Kosm. teh. Raket. vooruž. 2019, (2); 25-34 URL: https://doi.org/10.33136/stma2019.02.025
Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37 URL: https://doi.org/10.33136/stma2020.01.044
Gudramovich V.S., Skalskiy V.R., Selivanov Yu.M. Holographic and acousto-efficient diagnostics of heterogeneous designs and materials / reports. ed. Z. T. Nazarchuk. Lviv URL: http://www.nas.gov.ua/EN/Book/Pages/default.aspx?BookID=0000010420
Gudramovich V.S., Klimenko D.V., Gart E.L. Influence of cutouts on the strength of cylindrical compartments of launch vehicles under inelastic deformation of the material. Space science and technology. 2017.Vol. 23, No. 6. P. 12 – 20 URL: https://doi.org/10.15407/knit2017.06.012
Degtyarev K.G., Gnitko V.I., Tonkonozhenko A.M. Computer simulation of the destructive load on the fuel tank. Bulletin of Kharkiv National University for the Name of VN Karazin, series “Mathematical Model. Information technologies. Automated control systems "N 1105, 2014, pp.51-59 URL: http://nbuv.gov.ua/UJRN/VKhIMAM_2014_1105_24_7
Three-dimensional problems of mathematical theory of elasticity / V.D. Kupradze, T.G. Hegelia, M.O. Basheleishvili, T.V. Burchuladze - Moscow: Nauka, 1976. - 664 p. URL: https://www.twirpx.com/file/507934
Ilyushin, A.A. Plasticity. Part 1. Elastic - plastic deformation / A. A. Ilyushin. - M.; L.: Gostekhizdat, 1948 .- 376 p. URL: http://openarchive.nure.ua/handle/document/1342
Mozharovsky M.S. The theory of springiness, plasticity and increased sensitivity. К .: Vischa school, 2002 .- 308 p. URL: http://www.library.univ.kiev.ua/ukr/elcat/new/detail.php3915952
Cowper G., Symonds P. Strain hardening and strain-rate effects in the impact loading of cantilever beams. Tech. Rep. Brown University: Division of Applied Math., 1957. 28 р. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/144762.pdf
J.C.Simo, R.L. Teylor. Consistent tangent operator for rate-independent elastoplasticity. Computer methods in applied mechanics and engineering. Vol.48, pp.101-118, 1985. URL: https://doi.org/10.1016/0045-7825(85)90070-2
Degtyarev, K., Glushich, P., Gnitko, V., Strelnikova, E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells. // International Journal of Modern Physics and Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 10.13140/RG.2.1.1857.5209 URL: https://www.researchgate.net/publication/280728146_Numerical_Simulation_of_Free_Liquid-Induced_Vibrations_in_Elastic_Shells
Misyura S., Smetankina N., Misyura U. Rational modeling of a hydroturbine cover for strength analysis. Bulletin of Kharkiv Polytechnic Institute, Dynamics and strength of machines, no. 1, pp.34 –39, 2019. URL: http://repository.kpi.kharkov.ua/handle/KhPI-Press/44370 [in Ukrainian]
Degtyarev K. Strelnikova E. Sheludko G. Computer modeling of wind turbine blades with optimal parameters. Bulletin of V.N. Karazin Kharkiv National University. Series: Mathematical modeling. Information Technology. Automated control systems, no. 19, pp.81 – 86, 2012. URL: http://mia.univer.kharkov.ua/19/30251.pdf [in Russian]
Medvedovskaya T. Free Hydroelastic Vibrations of Hydroturbine Head Covers / T. Medvedovskaya, E. Strelnikova, K. Medvedyeva // Intern. J. Eng. and Advanced Research Technology (IJEART). 2015. Vol. 1, No 1. – P. 45–50. – DOI 10.13140/RG.2.1.3527.4961 URL: https://www.researchgate.net/publication/282868308_Free_Hydroelastic_Vibrations_of_Hydroturbine_Head
Eseleva E.V., Gnitko V.I., Strelnikova E.A. Natural vibrations of pressure vessels when interacting with liquid. Problems of Mechanical Engineering, vol. 9, no 1, pp.105 – 118, 2006.URL: http://journals.uran.ua/jme/issue/archive [in Ukrainian]
Gnitko, V., Naumenko, V., Rozova, L., Strelnikova, E. Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles. Journal of Basic and Applied Research International, 17(1), pp.75-87, 2016. https://www.researchgate.net/publication/301655238
Моссаковский В. И., Гудрамович В. С., Макеев Е. М. Контактные взаимодействия элементов оболочечных конструкций / отв. ред. В. Л. Рвачев. Киев, 1988. 288 с. http://www.pmi.lv/libdb/authors/view/2239
Hudramovych V. S. Contact mechanics of shell structures under local loading. Int. Appl. Mech. 2009. V. 45, No 7. P. 708 – 729. https://link.springer.com/article/10.1007/s10778-009-0224-5
Ильюшин А. А. Труды в 4-х т. М., 2009. Т. 4. Моделирование динамических процессов в твердых телах и инженерные приложения. 526 с. https://www.livelib.ru/book/1000815977
Hudramovich V. S., Sirenko V. N., Klimenko D. V., Daniev Ju. F., Hart E. L. Development of the normative framework methodology for justifying the launcher structures resource of launch vehicles. Strength of Materials. 2019. Vol. 51, No 3. P. 333 – 340. https://doi.org/10.33136/stma2020.01.044
Hudramovich V. S., Hart E. L., Strunin K. A. Numerical simulation of behavior of elastic structures with local stiffening. Kosm. teh. Raket. vooruž. 2019, (2); 25-34 р. https://doi.org/10.33136/stma2019.02.025
Hudramovych V. S. Features of nonlinear deformation of shell systems with geometrical imperfections. Int. Appl. Mech. 2006. Vol. 42, Nо 7. Р. 3 – 37. https://doi.org/10.33136/stma2020.01.044
Гудрамович В. С., Скальський В. Р., Селіванов Ю. М. Голографічне та акустикоемісійне діагностування неоднорідних конструкцій і матеріалів / відповід. ред. З. Т. Назарчук. Львів, 2017. 488 с. http://www.nas.gov.ua/EN/Book/Pages/default.aspx?BookID=0000010420
Гудрамович В. С., Клименко Д. В., Гарт Э. Л. Влияние вырезов на прочность цилиндрических отсеков ракет-носителей при неупругом деформировании материала. Космічна наука і технологія. 2017. Т. 23, № 6. C. 12 – 20. https://doi.org/10.15407/knit2017.06.012
Дегтярев К.Г., Гнитько В.И., Тонконоженко А.М. Компьютерное моделирование разрушающей нагрузки на топливный бак. Вісник Харківського національного університету імені ВН Каразіна, серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління» N 1105, 2014, С.51-59. http://nbuv.gov.ua/UJRN/VKhIMAM_2014_1105_24_7
Трехмерные задачи математической теории упругости / В.Д. Купрадзе, Т.Г. Гегелия, М.О. Башелейшвили , Т.В. Бурчуладзе .М.: Наука, 1976. 664 с. https://www.twirpx.com/file/507934
Ильюшин, А. А. Пластичность. Ч. 1. Упруго - пластические деформации / А. А. Ильюшин. – М. ; Л. : Гостехиздат, 1948. – 376 с. http://openarchive.nure.ua/handle/document/1342
Можаровський М.С. Теорія пружності, пластичності і повзучості. К.: Вища школа, 2002. - 308 с. http://www.library.univ.kiev.ua/ukr/elcat/new/detail.php3915952
Cowper G., Symonds P. Strain hardening and strain-rate effects in the impact loading of cantilever beams. Tech. Rep. Brown University: Division of Applied Mathematics, 1957. 28 р. https://apps.dtic.mil/dtic/tr/fulltext/u2/144762.pdf
J.C.Simo, R.L. Teylor. Consistent tangent operator for rate-independent elastoplasticity. Computer methods in applied mechanics and engineering. Vol.48, pp.101-118, 1985. https://doi.org/10.1016/0045-7825(85)90070-2
Degtyarev, K., Glushich, P., Gnitko, V., Strelnikova, E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells. // International Journal of Modern Physics and Applications. Vol. 1, No. 4, pp. 159-168, 2015. DOI: 10.13140/RG.2.1.1857.5209 https://www.researchgate.net/publication/280728146
Місюра C. Ю., Сметанкіна Н. В., Місюра Є. Ю. Раціональне моделювання кришки гідротурбіни для аналізу міцності. Вісн. Нац. техн. ун-ту «ХПІ». Сер. Динаміка і міцність машин. 2019. № 1. С. 34–39. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44370
Дегтярев К.Г., Стрельникова Е.А., Шелудько Г.А. Компьютерное моделирование лопастей ветроустановок с оптимальными параметрами /Вісник Харківського національного університету імені В.Н. Каразіна. Серія: Мат. моделювання. Інформаційні технології. Автоматизовані системи управління, No 19, 2012, С.81-86 http://mia.univer.kharkov.ua/19/30251.pdf
Medvedovskaya T. Free Hydroelastic Vibrations of Hydroturbine Head Covers / T. Medvedovskaya, E. Strelnikova, K. Medvedyeva // Intern. J. Eng. and Advanced Research Technology (IJEART). – 2015. – Vol. 1, No 1. – P. 45–50. – DOI 10.13140/RG.2.1.3527.4961 https://www.researchgate.net/publication/282868308_
Еселева Е.В. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью / Е.В. Еселева, В.И. Гнитько, Е.А. Стрельникова // Пробл. машиностроения. 2006. Т. 9. №1, С.105 - 118. http://journals.uran.ua/jme/issue/archive
Gnitko, V., Naumenko, V., Rozova, L., Strelnikova, E. Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles. Journal of Basic and Applied Research International, 17(1), pp.75-87, 2016. https://www.researchgate.net/publication/301655238