Calculation model for assessing the durability of structural elements in the presence of holes and cracks
Abstract
The problem of determining a number of cycles to failure for structural elements having technological holes of circular shape and weakened by cracks is considered. It is assumed that the structure is subject to cyclic loading (tension-compression) with given frequencies and amplitudes. A technique for determining stress intensity factors for the structural element with two symmetrical cracks adjoining a contour of hole has been developed. The problem of determining the stress intensity factor has been reduced to solving a singular integral equation. For the numerical solution of this equation, the boundary element method has been used. The formulas for the effective numerical simulation of singular integrals with singularities of the Cauchy and Hadamard type have been obtained. The solution accuracy of the considered singular equation is investigated. Boundary elements with different density approximations are considered. It has been established that the use of boundary elements with a cubic approximation of density leads to a significant increase in the solution accuracy. Densities appearing as unknown functions in the considered integral equations are used to calculate stress intensity factors. Comparison of the analytical and numerical solutions of the considered singular equation, as well as the analytical and numerical values of the stress intensity coefficients has been performed. The initial crack length starting crack development has been determined by using the threshold value of the stress intensity factor. The critical number of loading cycles leading to cracks of an unacceptable size has been calculated based on the Paris criterion. This critical number of cycles is a characteristic of durability. To compare the durability characteristics, the problems of determining the critical number of cycles for plates with single isolated cracks and with crack chains are considered. It has been established that at the same loading level, the smallest critical number of cycles corresponds to a structural element with cracks in the vicinity of technological holes.
Downloads
References
/References
A.E. Andreikyv, A.Y. Darchuk , Fatigue Failure And Lifespan of Constructions. Kyev: Scientific Thought, 1987, 404 p. [in Russian]
V.V. Panasiuk A.E. Andreikyv S.E. Kovchyk Estimation Methods Of Construction Materials Crack Strength. Kyev: Scientific Thought, 1971, 278 p. [in Russian]
Makhutov N.A., Deformation Cryterium Of Destruction And Fatigue Strength Structural Elements Calculation. M.:Mechanic Engineering. 1981, 272 p. [in Russian]
Panasiuk V.V., Stress Disribution Near Cracks In Plates And Claddings/ V.V. Panasiuk, M.P. Savruk, A.P. Datsyshyn. K.: Scientific Thought, 444 p,1976. [in Russian]
Kastratović G., “Approximate determination of stress intensity factor for multiple surface cracks” G. Kastratović, N.Vidanović, A. Grbović, B. Rašuo, FME Transactions. Vol. 46, N 1, R. 41-47, 2018.
Mirko S. Maksimović. Residual Life Estimation of Cracked Aircraft Structural Components S. / Mirko Maksimović, Ivana V. Vasović, Katarina S. Maksimović, Nataša Trišović, Stevan M. Maksimović, FME Transactions, Vol. 124, N 46, P. 124-128, 2018.
Zaydenvarg O.L. Strelnykova E.A., “Hypersyngular Eqations In The Strength Problems Of Structural Components With Cracks Under Temperature Stress”. Kharkiv National University Review. Series «Mathematical modeling. Information Technology. Automated Control Systems», № 847, P. 191-196, 2009. [in Russian]
Bettayeb M., Bouali Е, Abdelbaki N., Gaceb M., “Establishment of a database and a classification of the defects in the metal of pipes according to their severity”. Procedia Engineering. Vol. 42, P. 607–615, 2012.
Mirko S. Maksimović. “Residual Life Estimation of Cracked Aircraft Structural Components”, S. Mirko Maksimović, Ivana V. Vasović, Katarina S. Maksimović, Nataša Trišović, Stevan M. Maksimović, FME Transactions. Vol. 124, N 46, P. 124–128, 2018.
Guchinsky R.V., Petinov S.V., “Numerical modeling of the surface fatigue crack propagation including the closure effect”. Int. J. Comput. Meth. Eng. Sci. Mech, V. 17, 2016. DOI: 10.1080/15502287.2015.1125402.
Strelnykova E. A., Kovch O. Y. “Research Of Mutual Influence Of Pores In A Weld Seab Under Thermal Power Stress”. East-Europian Journal Of Modern Technologies, №5, P. 59–63, 2015.
C.Iu. Misiura, N.V. Smetankina, Ye.Iu. Misiura, “Rational Modeling Of Hydroturbine Head Cover For Strength Analyses”. NatIonal Technic University «KhPI» Review. Series: Dynamics And Strength Of Machines, № 1, P. 34-39, 2019. [in Ukrainian]
Medvedovskaya T., Strelnikova E., Medvedyeva K., “Free hydroelastic vibrations of hydroturbine head covers ”. Int. J. Eng. and Advanced Research Technology. Vol. 1, No 1, P.45-50, 2015.
Eseleva E.V., Hnytko V.Y., Strelnykova E.A., “Natural Vibration Of High Pressure Tanks Under Interference With A Liquid ”. Mechanic Engineering Problems, №1, P.105 – 118, 2006. [in Russian]
Paris P., Erdogan F., “The Cryterium Of Fatigue Extension ”. Of Tech. Mechanics, Ser. D, № 4, Р. 60-68, 1987. [in Russian]
Strelnykova E. A. “Hypersyngular Equations For Two-dimensional Boundary Problevs Of Laplaсe And Lame Equations”. Dop. NSA of Ukraine. №3, P. 27 – 31, 2001. [in Russian]
Kantor B.Ia. ,Strelnykova E. A. Hypersyngular equations In Continuum Mechanics Problems. Kharkov: New Word, 2005, 252 p. [in Russian
Gnitko V., Naumemko Y., Strelnikova E. “Low Frequency Sloshing Analysis of Cylindrical Containers with Flat аnd Conical Baffles”. International Journal of Applied Mechanics and Engineering. Vol. 22, Issue 4, Р. 867-881, 2017.
Kantor B., Strelnikova O., Medvedovska T., Rzhevska I., Yeseleva O., Lynnyk O., Zelenska O. Rozrakhunok zalyshkovoho resursu elementiv protochnoi chastyny hidroturbin HES ta HAES. Methodology Guidlines: Spesification. SOU-NMEV 40.1 –21677681–51: 2011: st. By The Minister of Energy and Coal Mining of Ukraine: implementation 07.07.11. K.: Ministerstvo enerhetyky ta vuhilnoi promyslovosti Ukrainy, 2011. 76 s. [in Russian]
Strelnykova E.A. “Probable Estimation Of Hydroturbine Shaft Lifespan Under Cracks Occurence”. E.A. Strelnykova, Y.H. Syrota, A.V. Lynnyk, L.A. Kalembet, V.N. Zarkhyna, O.L. Zadenvarh// Mechanic Engineering Problems, Book 20, №1, P. 28-35, 2017.[in Russian]
Андрейкив А.Е. Драчек А.И. Усталостное разрушение и долговечность конструкций. Киев: Наук. Думка, 1987. 404 с.
Панасюк В.В. Андрейкив С.Е. Ковчик Методы оценки трещиностойкости конструкционных материалов. Киев: Наук. думка, 1971. 278 с.
Махутов Н.А. Деформационные критерии разрушения и расчет элементов конструкций на усталостную прочность. М.: Машиностроение, 1981. 272 с.
Панасюк В.В. Саврук М.П., Дацышин А.П. Распределение напряжений около трещин в пластинах и оболочках. К.: Наук. думка, 1976. 444 с.
Kastratović G., Vidanović N., Grbović A., Rašuo B. Approximate determination of stress intensity factor for multiple surface cracks. FME Transactions. 2018. Vol. 46. N 1. Р. 41–47.
Mirko S. Maksimović. Residual Life Estimation of Cracked Aircraft Structural Components / S. Mirko Maksimović, Ivana V. Vasović, Katarina S. Maksimović, Nataša Trišović, Stevan M. Maksimović . FME Transactions. 2018. Vol. 124. N 46. P. 124–128.
Зайденварг О.Л., Стрельникова Е.А. Гиперсингулярные уравнения в задачах прочности элементов конструкций с трещинами при температурном нагружении. Вісник Харківського національного ун-ту. Серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи управління». 2009. № 847. С. 191–196.
Bettayeb M., Bouali Е, Abdelbaki N., Gaceb M. Establishment of a database and a classification of the defects in the metal of pipes according to their severity. Procedia Engineering. 2012. Vol. 42. P. 607–615.
Mirko S. Maksimović. Residual Life Estimation of Cracked Aircraft Structural Components S. / Mirko Maksimović, Ivana V. Vasović, Katarina S. Maksimović, Nataša Trišović, Stevan M. Maksimović. FME Transactions. 2018. Vol. 124.N 46. P. 124–128.
Guchinsky R.V., Petinov S.V. Numerical modeling of the surface fatigue crack propagation including the closure effect. Int. J. Comput. Meth. Eng. Sci. Mech. 2016. V. 17. DOI: 10.1080/15502287.2015.1125402.
Стрельникова Е. А., Ковч О. И. Исследование взаимного влияния пор в сварном шве под воздействием термосиловой нагрузки. Восточно-Европейский журнал передовых технологий. 2015. №5. С. 59–63.
Місюра C.Ю., Сметанкіна Н.В., Місюра Є.Ю. Раціональне моделювання кришки гідротурбіни для аналізу міцності. Вісник Національного технічного університету «ХПІ». Серія: Динаміка і міцність машин. 2019. № 1. С. 34-39.
Medvedovskaya T. Strelnikova E., Medvedyeva K. Free hydroelastic vibrations of hydroturbine head covers. Int. J. Eng. and Advanced Research Technology. 2015.Vol. 1. No 1.– P.45-50.
Еселева Е.В., Гнитько В.И., Стрельникова Е.А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Пробл. машиностроения. 2006. №1. С.105 - 118.
Пэрис П., Эрдоган Ф. Критерии усталостного распространения трещин. Техн. механика. Сер. Д. 1987. № 4. С. 60–68.
Стрельникова Е. А. Гиперсингулярные интегральные уравнения в двумерных краевых задачах для уравнения Лапласа и уравнений Ламе. Доп. НАН України. 2001. №3. С. 27 – 31.
Кантор Б.Я., Стрельникова Е.А. Гиперсингулярные интегральные уравнения в задачах механики сплошной среды. Харьков: Новое слово, 2005. 252 с.
Gnitko V., Naumemko Y., Strelnikova E. Low Frequency Sloshing Analysis of Cylindrical Containers with Flat аnd Conical Baffles. International Journal of Applied Mechanics and Engineering. 2017. Vol. 22. Issue 4. Р. 867–881.
Кантор Б., Стрельнікова О., Медведовська Т., Ржевська І., Єселева О., Линник О., Зеленська О. Розрахунок залишкового ресурсу елементів проточної частини гідротурбін ГЕС та ГАЕС. Методичні вказівки: нормативний документ. СОУ-НМЕВ 40.1 –21677681–51: 2011: утв. Міністерством енергетики та вугільної промисловості України: ввод в действие 07.07.11. К.: Міністерство енергетики та вугільної промисловості України, 2011. 76 с.
Стрельникова Е.А.. Вероятностная оценка долговечности вала гидротурбины при наличии трещин/ Е.А. Стрельникова, И.Г. Сирота, А.В. Линник, Л.А. Калембет, В.Н. Зархина, О.Л. Зайденварг. Проблемы машиностроения . 2017. Том 20, №1.С. 28–35.