Statistical properties of the telephone network
Abstract
The directed network of telephone subscribers is considered in the article. It can be described as a dynamic network with vertices that correspond to the subscribers of the telephone network and emerging directional edges that correspond to the connections between the respective subscribers. The position of the edge and its direction is determined by the incoming and outgoing calls from the corresponding vertices. The subject of the article is the statistical properties of the connections of a certain subset of telephone network subscribers. Such connections are dynamic in nature due to their appearance and disappearance. The number of outgoing (or incoming) connections occurred during a day at a selected vertex is used as the main characteristic. The distribution density of the number of outgoing (or incoming) connections (or calls) of such a network has been analyzed using the experimental data. It has been shown that such a distribution density over the number of calls obeys the lognormal distribution density, which depends on the two parameters. The values of two parameters, namely the mean value and the variance, determining the lognormal distribution density are established. The reasons for the appearance of a lognormal distribution density over the number of incoming (or outgoing) connections have been discussed. The statistical properties of other groups of subscribers have been considered as well. In particular, the group that makes a large number of outgoing calls to various subscribers of the telephone network has been selected for a separate study. The members of this group, who create and distribute spam can be called spammers. It has been shown that these groups, spammers for example, also obeys the lognormal distribution density over the number of calls but they are characterized by the different mean value and variance.
Downloads
References
/References
K. Appel and W. Haken, “Every map is four colourable”. Bulletin of the American Mathematical, Society 82, p.711–12, 1976.
P.Erdös, A.Rényi, “On the evolution of random graphs”, Magyar Tudomanyos Akademia Matematikai Kutato Intezetenek Kozlemenyei (Publications of the Mathematical Institute of the Hungarian Academy of Sciences), Т. 5, p.17-61, 1960.
R.Albert, A.L.Barabasi, “Statistical mechanics of complex networks”, Rev. Mod. Phys. 74, p.47-97; 2002. cond-mat 0106096.
S.N.Dorogovtsev, J.F.F.Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW: Oxford University Press, Oxford, (2003).
Newman, M.E.J., “The structure and function of complex networks”, SIAM Review 45, p.167-256, 2003, cond-mat 0303516.
S.Boccatti, V.Latora, Y.Moreno, M.Chavez, D.U.Hwang. “Complex Networks: Structure and Dynamics”, Physics Reports, 424, p.175-308, 2006.
A-L.Barab’asi, Z.N.Oltvai,. “Network biology: Understanding the cell’s functional organization”. Nature Rev. Genet, 5, p.101–13, 2003.
A.Gursoy, O.Keskin, and R.Nussinov, “Topological properties of protein interaction networks from a structural perspective”. Biochem. Soc. Trans. 36, p.1386–1403, 2008.
O.Sporn, Networks of the Brain: MIT Press, Cambridge, MA, 2011.
G. F.Davis, M.Yoo, W. E.Baker, “The Small World of the American Corporate Elite”, 1982–2001.Strategic Organization1, p.301–26. 2003.
W.Zachary, “An information flow model for conflict and fission in small groups”, J. Anthropol. Res, 33, 452–73, 1977.
Barabasi et al, “Evolution of the social network of scientific collaborations”, Physica A, 311 p.590–614, 2002.
A.Arenas, L.Danon, A.D az-Guilera, P. M.Gleiser, and R.Guimera, “Community analysis in social networks”, Eur. Phys. J. B. 38, p.373–80, 2004.
P.Yodzis, “Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem”, J. Anim. Ecol, 67, p.635–58, 1998.
D.Lusseau, “The emergent properties of a dolphin social network ”. Proc. R. Soc. Lond. B, (Suppl.)270, 186–8, 2003.
J.Lundberg, F.Moberg, “Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management ”, Ecosystems, 6, p.87–98, 2003.
J. Kleinberg, S. R. Kumar, P. Raphavan, S. Rajagopalan and A. Tomkins, “The web as a graph: Measurements, models and methods”, Proceedings of the International Conference on Combinatorics and Computing, July 26–28, 1999.
R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, “Extracting largescale knowledge bases from the web ”, Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, September 7–10, (1999).
J.Abello, A.Buchsbaum, and J.Westbrook, “A functional approach to external graph algorithms ”, Proc. 6th European Symposium on Algorithms, p.332–343, 1998.
W.Aiello, F. Chung and L. Lu, “A random graph model for massive graphs ”, in Proc. 32nd ACM Symp. Theor. Comp., p.171-180, 2000.
R. Albert, H. Jeong and A. Barabási, “Diameter of the World Wide Web ”, Nature, 401, September 9, p.130-131, 1999.
Barabási, and R. Albert, “Emergence of scaling in random networks ”, Science, 286, October 15, p.509-512, 1999.
J.Abello, A.Buchsbaum, J.Westbrook, “A functional approach to external graph algorithms ”, Proc. 6th European Symposium on Algorithms, p 332–343, 1998.
A.N.Kolmogorov, “On the log-normal distribution law of particle size in fragmentation process ”, Doklady AN USSR, Vol.31, No.2, p.99-101, 1941. [in Russian]
Edwin L.Crow, Kunio Shimizu, (Editors) Lognormal Distributions, Theory and Applications, vol. 88, Statistics: Textbooks and Monographs, New York: Marcel Dekker, (1988).
R.Gibrat, “Une loi des répartitions économiques: l’effet proportionnel ”, Bull. Statist. Gén. Fr., 19, 469ff, p.469-513, 1930.
W.Feller, An Introduction to Probability Theory and Its Applications. Vol. 2, M., Mir, 1967, 752с [in Russian].
K. Appel and W. Haken, Every map is four colourable. Bulletin of the American Mathematical Society 82. (1976). 711–12.
Erdös P., Rényi A. On the evolution of random graphs, Magyar Tudomanyos Akademia Matematikai Kutato Intezetenek Kozlemenyei (Publications of the Mathematical Institute of the Hungarian Academy of Sciences).Т. 5 (1960).17-61.
Albert, R. and Barabasi, A.L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74. (2002) 47-97; cond-mat 0106096.
Dorogovtsev, S.N. and Mendes, J.F.F. Evolution of Networks: From Biological Nets to the Internet and WWW: Oxford University Press, Oxford. 2003. 264 pp.
Newman, M.E.J. The structure and function of complex networks. SIAM Review 45. (2003). 167. cond-mat 0303516.
S.Boccatti, V.Latora, Y.Moreno, M.Chavez, D.U.Hwang. Complex Networks: Structure and Dynamics. Physics Reports. 424(2006). 175-308.
Barab’asi, A-L., and Oltvai, Z. N.. Network biology: Understanding the cell’s functional organization. Nature Rev. Genet. 5. (2003). 101–13.
Gursoy, A., Keskin, O., and Nussinov, R. Topological properties of protein interaction networks from a structural perspective. Biochem. Soc. Trans. 36. (2008). 1386–1403.
Sporn,O. Networks of the Brain: MIT Press, Cambridge. MA. 2011. 412 pp.
Davis, G. F., Yoo, M., and Baker, W. E. The Small World of the American Corporate Elite, 1982–2001.Strategic Organization1. (2003). 301–26.
Zachary, W. An information flow model for conflict and fission in small groups. J. Anthropol. Res.33. (1977). 452–73.
A. Barabasi et al. Evolution of the social network of scientific collaborations. Physica A. 311 (2002). 590–614.
Arenas, A., Danon, L., D az-Guilera, A., Gleiser, P. M., and Guimera, R. Community analysis in social networks. Eur. Phys. J. B. 38. (2004). 373–80.
Yodzis, P. Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem. J. Anim. Ecol. 67. (1998). 635–58.
Lusseau, D. The emergent properties of a dolphin social network. Proc. R. Soc. Lond. B. (Suppl.) 270. (2003). 186–8.
Lundberg, J., and Moberg, F. Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management.Ecosystems. 6. (2003). 87–98.
J. Kleinberg, S. R. Kumar, P. Raphavan, S. Rajagopalan and A. Tomkins, The web as a graph: Measurements, models and methods, Proceedings of the International Conference on Combinatorics and Computing. July 26–28. (1999).
S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins. Extracting largescale knowledge bases from the web. Proceedings of the 25th VLDB Conference, Edinburgh. Scotland. September 7–10. (1999).
J. Abello, A. Buchsbaum, and J. Westbrook, A functional approach to external graph algorithms, Proc. 6th European Symposium on Algorithms. (1998). 332–343.
Aiello W., F. Chung and L. Lu. A random graph model for massive graphs. in Proc. 32nd ACM Symp. Theor. Comp. 2000.
R. Albert, H. Jeong and A. Barabási, Diameter of the World Wide Web. Nature. 401, September 9, (1999). 130-131.
A. Barabási, and R. Albert, Emergence of scaling in random networks. Science. 286. October 15. (1999). 509-512.
J. Abello, A. Buchsbaum, and J. Westbrook, A functional approach to external graph algorithms. Proc. 6th European Symposium on Algorithms. (1998). 332–343.
А.Н.Колмогоров, О логарифмически нормальном законе распределения размеров частиц при дроблении: ДАН СССР, т.31. 1941. 93-101.
Crow, Edwin L. and Shimizu, Kunio (Editors) Lognormal Distributions, Theory and Applications, vol. 88, Statistics: Textbooks and Monographs. New York: Marcel Dekker. (1988). 387 pp.
Gibrat, R. Une loi des répartitions économiques: l’effet proportionnel. Bull. Statist. Gén. Fr. 19. 469ff. 1930. 469-513.
Фелер В. Введение в теорию вероятностей и ее приложения. т.2. М.: Мир, 1967. 752с.