Liquid oscillation in a cylindrical-conical shell under the action of vertical and horizontal excitation
Abstract
Vibrations of an ideal incompressible fluid in shells of revolution have been considered. The shells of revolution under consideration include cylindrical and conical parts. It is assumed that the shell is subjected to vertical and horizontal excitations. The liquid in the shells is supposed to be an ideal and incompressible one. The fluid flow is the irrotational. Therefore the velocity potential that satisfies the Laplace equation exists. The non-penetration conditions are applied to the wetted surfaces of the shell and the kinematic and dynamic conditions on the free surface have been considered. The liquid pressure as the function of the velocity potential is defined using the Bernoulli equation. The problem of determining the fluid pressure is reduced to solving a singular integral equation. The numerical solution of the equation has been obtained by the method of discrete singularities. The method of simulating the free and forced oscillations of the fluid in the shells of revolution has been developed.
Downloads
References
/References
R.A. Ibrahim, V.N. Pilipchuck, T. Ikeda., “Recent Advances In Liquid Sloshing Dynamics”. Applied Mechanics Reviews, Vol. 54, No. 2, pp. 133-199, 2001.
R.A. Ibrahim. Liquid Sloshing Dynamics: textbook. Cambridge University Press, New York, 2005, 948 p.
Eseleva E., Gnitko V., Strelnikova E., “Natural oscillations of pressure vessels during interaction with a liquid”. Prob. mechanical engineering, №1, pp.105-118, 2006. [in Russian]
Gnitko V., Naumenko V., Rozova L., Strelnikova E.” Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles”. Journal of Basic and Applied Research International, 17(1), pp. 75-87, 2016.
Gavrilyuk, I., M. Hermann, Lukovsky I., Solodun O., Timokha, A. “Natural Sloshing frequencies in Truncated Conical Tanks”. Engineering Computations, Vol. 25 Iss: 6, pp.518 – 540, 2008.
Gnitko, V., Naumemko, Y., Strelnikova E. “Low frequency sloshing analysis of cylindrical containers with flat and conical baffles”. International Journal of Applied Mechanics and Engineering, 22 (4), pp.867-881, 2017.
Gnitko, V., Degtyarev, K., Naumenko, V., Strelnikova, E. “Coupled BEM and FEM analysis of fluid-structure interaction in dual compartment tanks”. Int. Journal of Computational Methods and Experimental Measurements, Vol.6, No.6, pp. 976-988, 2018.
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. “Free and forced vibrations of liquid storage tanks with baffles”. J. Modern Technology & Engineering, Vol.3, No.1, pp.15-52, 2018.
Brebbia, C.A, Telles, J.C.F & Wrobel, L.C., Boundary element techniques: theory and applications in engineering: textbook. Springer-Verlag: Berlin and New York, 1984, 464 p.
Kylynnyk V. Yu., Gnitko V. I., Naumenko Yu. V., Rozova L. V. “Numerical simulation of fluid oscillations in composed shells of rotation at overloads”. Applied Mathematical Modeling, N 1., pp. 115-121, 2018. [in Ukrainian]
David A. Cox. “The Arithmetic-Geometric Mean of Gauss”. L'Enseignement Mathématique, t. 30, pp. 275 -330, 1984.
Yu. V. Gandel', T. S. Polyanskaya, “Justification of a Numerical Method for Solving Systems of Singular Integral Equations in Diffraction Grating Problems”. Differ. Equ, 39:9, pp.1295–1307, 2003.
R.A. Ibrahim, V.N. Pilipchuck, T. Ikeda. Recent Advances In Liquid Sloshing Dynamics. Applied Mechanics Reviews. 2001. Vol. 54, No. 2. pp. 133-199.
R.A. Ibrahim. Liquid Sloshing Dynamics:textbook. Cambridge University Press, New York, 2005. 948 p.
Еселева Е.В., Гнитько В.И., Стрельникова Е.А. Собственные колебания сосудов высокого давления при взаимодействии с жидкостью. Пробл. машиностроения. 2006. №1. С.105-118.
Gnitko V., Naumenko V., Rozova L., Strelnikova E. Multi-domain boundary element method for liquid sloshing analysis of tanks with baffles. Journal of Basic and Applied Research International. 2016. 17(1). pp. 75-87.
Gavrilyuk, I., M. Hermann, Lukovsky I., Solodun O., Timokha, A. Natural Sloshing frequencies in Truncated Conical Tanks. Engineering Computations. 2008. Vol. 25, Iss: 6. pp.518 – 540.
Gnitko, V., Naumemko, Y., Strelnikova E. Low frequency sloshing analysis of cylindrical containers with flat and conical baffles, International Journal of Applied Mechanics and Engineering. 2017. 22 (4). pp.867-881.
Gnitko, V., Degtyarev, K., Naumenko, V., Strelnikova, E. Coupled BEM and FEM analysis of fluid-structure interaction in dual compartment tanks. – Int. Journal of Computational Methods and Experimental Measurements. 2018. Vol.6, No.6. pp. 976-988.
Strelnikova E., Gnitko V., Krutchenko D., Naumemko Y. Free and forced vibrations of liquid storage tanks with baffles, J. Modern Technology & Engineering. 2018. Vol.3, No.1. pp.15-52.
Brebbia, C.A, Telles, J.C.F & Wrobel, L.C., Boundary element techniques: theory and applications in engineering:textbook. Springer-Verlag: Berlin and New York, 1984. 464 p.
Килинник В.Ю., Гнітько В.І., Науменко Ю.В., Розова Л.В. Чисельне моделювання коливань рідини в складених оболонках обертання при перевантаженнях. Прикладні питання математичного моделювання. 2018. N 1. S. 115-121.
David A. Cox. The Arithmetic-Geometric Mean of Gauss.L'Enseignement Mathématique. 1984. t. 30. pp. 275 -330.
Yu. V. Gandel', T. S. Polyanskaya, Justification of a Numerical Method for Solving Systems of Singular Integral Equations in Diffraction Grating Problems, Differ. Equ. 2003. 39:9 pp.1295–1307.