Thermal Stresses Arising In An Infinite Rod Within Spatially Nonlocal Thermoelasticity
Keywords:
fractional heat conduction equation; Caputo fractional derivative; Riesz fractional derivative; nonlocal thermoelasticity problem
Abstract
In the article, 1D spatially nonlocal thermoelasticity problem is considered. The method of integral transforms and numerical integration were applied to solve this problem. Distributions of dispalcement and temperature for various values of time parameter are obtained.
Downloads
Download data is not yet available.
References
Atanackovic T.M., Stankovic B. Generalized wave equation in nonlocal elasticity. // Acta Mechanica. — 2009. – 208. – P. 1-10.
Povstenko Y.Z. Thermoelasticity which uses fractional heat conduction equation. // Мат. методи та фіз.-мех. поля. — 2008. – 51, №2. – С. 239-246.
Владимиров В.С. Уравнения математической физики. — М.: Наука, 1971. – 512 с.
R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Phys. Rep. – 2000. – 339, p. 1-77.
S. Lepri, R. Livi, A. Politi. Anomalous heat conduction, in book: Anomalous transport: foundations and applications edited by R. Klages, G. Radons, I.M. Sokolov, — Wiley, VCH(Berlin), 2008, – 584 p.
А.М. Нахушев. Дробное исчисление и его применение. — М.: Физматлит, 2003. — 272 с.
Учайкин В.В. Автомодельная аномальная диффузия и устойчивые законы. // УФН, – 2003. – т. 173, №8, – С. 847-876.
Смирнов Б.М. Энергетические процессы в макроскопических фрактальных структурах. // УФН. – 1993. – т. 161, №6. – С. 171-200.
Бейбалаев В.Д. Математическая модель теплопереноса в средах с фрактальной структурой. // Математическое моделирование. — 2009. – 21: 5. – С. 55-62.
Boyadjiev L., Scherer R. Fractional extensions of the temperature field problem in oil strata. // Kuwait. J. Sci. Eng. — 2004. – 31 (2). – p. 15-32.
Benson D.A., Wheatcraft S.W., Meerschaert M.M. The fractional-order equation of Levy motion, Water Resour. Res. — 2000. – 36. – p. 1413-1424.
Benson D.A., Schumer R., Meerschaert M.M., Wheatcraft S.W. Fractional dispersion, Levy motion, and the MADE tracer tests // Transp. Por. Med. — 2003. – 42. – p. 211-240.
Scalas E., Gorenflo R., Mainardi F. Uncoupled continuous-time random walks: solutions and limiting behaviour of the master equation, Phys. Rev. E. — 2004. – 692. – 011107.
Ostoja-Starzewski M. Towards thermoelasticity of fractal media. // Journal of thermal stresses. — 2007. – 30. – p. 889-896.
Sherief H.H., El-Sayed A.M.A., Abd El-Latief A.M. Fractional order theory of thermoelasticity // International Journal of Solids and Structures, 47 (2010), pp. 269-275.
Youssef H. M. Theory fractional order generalized thermoelasticity // J. Heat Transfer (ASME), 132(6), 2010, doi: 10.1115/3.4000705.
Povstenko Y.Z. Theory of thermoelasticity based on the space-time-fractional heat conduction equation. // Phys. Scr. — 2009. – T 136. – p. 014017-014023.
Povstenko Y.Z. Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses. // Journal of thermal stresses. — 2008. – vol. 31, issue 2. – p. 127-148.
Povstenko Y. Time-fractional radial heat conduction in a cylinder and associated thermal stresses // Arch. Appl. Mech., doi: 10.1007/s00419-011-0560-x.
Абрамовиц М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. – Москва: Наука, 1979. – 832 с.
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье. (Серия: «Справочная математическая библитотека»). — М.: Наука, 1967. – 300 с.
Kilbas A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. — North-Holland, Mathematics studies 204, 2006, – 524 p.
Povstenko Y.Z. Thermoelasticity which uses fractional heat conduction equation. // Мат. методи та фіз.-мех. поля. — 2008. – 51, №2. – С. 239-246.
Владимиров В.С. Уравнения математической физики. — М.: Наука, 1971. – 512 с.
R. Metzler, J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach // Phys. Rep. – 2000. – 339, p. 1-77.
S. Lepri, R. Livi, A. Politi. Anomalous heat conduction, in book: Anomalous transport: foundations and applications edited by R. Klages, G. Radons, I.M. Sokolov, — Wiley, VCH(Berlin), 2008, – 584 p.
А.М. Нахушев. Дробное исчисление и его применение. — М.: Физматлит, 2003. — 272 с.
Учайкин В.В. Автомодельная аномальная диффузия и устойчивые законы. // УФН, – 2003. – т. 173, №8, – С. 847-876.
Смирнов Б.М. Энергетические процессы в макроскопических фрактальных структурах. // УФН. – 1993. – т. 161, №6. – С. 171-200.
Бейбалаев В.Д. Математическая модель теплопереноса в средах с фрактальной структурой. // Математическое моделирование. — 2009. – 21: 5. – С. 55-62.
Boyadjiev L., Scherer R. Fractional extensions of the temperature field problem in oil strata. // Kuwait. J. Sci. Eng. — 2004. – 31 (2). – p. 15-32.
Benson D.A., Wheatcraft S.W., Meerschaert M.M. The fractional-order equation of Levy motion, Water Resour. Res. — 2000. – 36. – p. 1413-1424.
Benson D.A., Schumer R., Meerschaert M.M., Wheatcraft S.W. Fractional dispersion, Levy motion, and the MADE tracer tests // Transp. Por. Med. — 2003. – 42. – p. 211-240.
Scalas E., Gorenflo R., Mainardi F. Uncoupled continuous-time random walks: solutions and limiting behaviour of the master equation, Phys. Rev. E. — 2004. – 692. – 011107.
Ostoja-Starzewski M. Towards thermoelasticity of fractal media. // Journal of thermal stresses. — 2007. – 30. – p. 889-896.
Sherief H.H., El-Sayed A.M.A., Abd El-Latief A.M. Fractional order theory of thermoelasticity // International Journal of Solids and Structures, 47 (2010), pp. 269-275.
Youssef H. M. Theory fractional order generalized thermoelasticity // J. Heat Transfer (ASME), 132(6), 2010, doi: 10.1115/3.4000705.
Povstenko Y.Z. Theory of thermoelasticity based on the space-time-fractional heat conduction equation. // Phys. Scr. — 2009. – T 136. – p. 014017-014023.
Povstenko Y.Z. Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses. // Journal of thermal stresses. — 2008. – vol. 31, issue 2. – p. 127-148.
Povstenko Y. Time-fractional radial heat conduction in a cylinder and associated thermal stresses // Arch. Appl. Mech., doi: 10.1007/s00419-011-0560-x.
Абрамовиц М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. – Москва: Наука, 1979. – 832 с.
Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье. (Серия: «Справочная математическая библитотека»). — М.: Наука, 1967. – 300 с.
Kilbas A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations. — North-Holland, Mathematics studies 204, 2006, – 524 p.
Published
2014-03-11
How to Cite
Брацыхина, Л. И., Синах, М. В., & Фильштинский, Л. А. (2014). Thermal Stresses Arising In An Infinite Rod Within Spatially Nonlocal Thermoelasticity. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 25(1131), 13-23. Retrieved from https://periodicals.karazin.ua/mia/article/view/14227
Issue
Section
Статті