Free vibrations of an elastic cylindrical shell coupled with liquid sloshing
Keywords:
fluid-structure interaction; finite and boundary element methods; systems of singular integral equations
Abstract
The problem of dynamics analysis for shells of revolution partially filled with an ideal incompressible liquid was reduced to solving the system of singular integral equations. The direct formulation of boundary integral equation method was applied. The authors have elaborated the method of numerical simulation of the process and approved it by comparison of numerical and analytical solutions. They considered the shell vibrations coupled with liquid sloshing in presence of gravity forces. The free vibrations of elastic cylindrical shell were analyzed using the proposed technique.
Downloads
Download data is not yet available.
References
G. Popov, S. Sankar, T.S. Sankar, G.H. Vatisin, Liquid Sloshing in Rectangular Road Container. Computers & Fluids. V.21, N 4, pp.551-569. 1999.
Dukowicz , J. K. , Dvinsky , and A. S., Approximate Factorization as a High Order Splitting for the Implicit Incompressible Flow Equations, J. Comput. Phys., 102 , pp. 330-336, 1992.
Tezduyar T. E. Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces. Encyclopedia of Computational Mechanics, (3): Fluids, pp.1-55, 2004.
Recent Advances in Boundary Element Methods A Volume to Honor Professor Dimitri Beskos Manolis, George; Polyzos, Demosthenes Eds., XXXVIII, 470 p., 2009.
Brebbia, C.A., Telles, J.C.F. & Wrobel, L.C. Boundary Element Techniques, Springer-Verlag: Berlin and New York, 1984.
J. Cappello, A. Sauret, F. Boulogne, E. Dressaire, H. Stone, Damping of liquid sloshing by foams: from everyday observations to liquid transport, Journal of Visualization, pp. 1-3, 2014.
Strelnikova E., Yeseleva E., Gnitko V., Naumenko V. Free and forced vibrations of the shells of revolution interacting with the liquid Proc. of XXXII Conference “Boundary elements and other mesh reduction methods” WITPress, Transaction on Modeling and Simulation, pp. 203-211, 2010.
Ventsel E.,. Naumenko V, Strelnikova E., Yeseleva E. Free vibrations of shells of revolution filled with a fluid. Engineering analysis with boundary elements, 34, pp. 856-862, 2010.
Gnitko V., Marchenko U., Naumenko V., Strelnikova E. Forced vibrations of tanks partially filled with the liquid under seismic load. Proc. of XXXIII Conference “Boundary elements and other mesh reduction methods” WITPress, Transaction on Modeling and Simulation, pp. 285-296, 2011.
Chen, Y.H., Hwang, W.S. & Ko, C.H., Numerical simulation of the three-dimensional sloshing problem by boundary element method. Journal of the Chinese Institute of Engineers, 23(3), pp. 321-330, 2000.
Ibrahim R. A. Liquid sloshing dynamics: theory and applications Cambridge University Press, 957p., 2005.
David A. Cox. The Arithmetic-Geometric Mean of Gauss. L’Enseignement Mathemaique, t. 30, pp. 275 -330, 1984.
Stroud A.H., Secrest D. Gaussian Quadrature Formulas. Prentice-Hall, Englewood, N.J., Cliffs, 206 p., 1966.
Naumenko V.V., Strelnikova H.A. Singular integral accuracy of calculations in two-dimensional problems using boundary element methods. Engineering analysis with boundary elements. №26, pp. 95-98, 2002.
В. И. Гнитько, В. В. Науменко. Численное моделирование плесканий жидкости в упругой цилиндрической оболочке. Вісник Харківського національного університету №1015, с. 66-72, 2012.
Dukowicz , J. K. , Dvinsky , and A. S., Approximate Factorization as a High Order Splitting for the Implicit Incompressible Flow Equations, J. Comput. Phys., 102 , pp. 330-336, 1992.
Tezduyar T. E. Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces. Encyclopedia of Computational Mechanics, (3): Fluids, pp.1-55, 2004.
Recent Advances in Boundary Element Methods A Volume to Honor Professor Dimitri Beskos Manolis, George; Polyzos, Demosthenes Eds., XXXVIII, 470 p., 2009.
Brebbia, C.A., Telles, J.C.F. & Wrobel, L.C. Boundary Element Techniques, Springer-Verlag: Berlin and New York, 1984.
J. Cappello, A. Sauret, F. Boulogne, E. Dressaire, H. Stone, Damping of liquid sloshing by foams: from everyday observations to liquid transport, Journal of Visualization, pp. 1-3, 2014.
Strelnikova E., Yeseleva E., Gnitko V., Naumenko V. Free and forced vibrations of the shells of revolution interacting with the liquid Proc. of XXXII Conference “Boundary elements and other mesh reduction methods” WITPress, Transaction on Modeling and Simulation, pp. 203-211, 2010.
Ventsel E.,. Naumenko V, Strelnikova E., Yeseleva E. Free vibrations of shells of revolution filled with a fluid. Engineering analysis with boundary elements, 34, pp. 856-862, 2010.
Gnitko V., Marchenko U., Naumenko V., Strelnikova E. Forced vibrations of tanks partially filled with the liquid under seismic load. Proc. of XXXIII Conference “Boundary elements and other mesh reduction methods” WITPress, Transaction on Modeling and Simulation, pp. 285-296, 2011.
Chen, Y.H., Hwang, W.S. & Ko, C.H., Numerical simulation of the three-dimensional sloshing problem by boundary element method. Journal of the Chinese Institute of Engineers, 23(3), pp. 321-330, 2000.
Ibrahim R. A. Liquid sloshing dynamics: theory and applications Cambridge University Press, 957p., 2005.
David A. Cox. The Arithmetic-Geometric Mean of Gauss. L’Enseignement Mathemaique, t. 30, pp. 275 -330, 1984.
Stroud A.H., Secrest D. Gaussian Quadrature Formulas. Prentice-Hall, Englewood, N.J., Cliffs, 206 p., 1966.
Naumenko V.V., Strelnikova H.A. Singular integral accuracy of calculations in two-dimensional problems using boundary element methods. Engineering analysis with boundary elements. №26, pp. 95-98, 2002.
В. И. Гнитько, В. В. Науменко. Численное моделирование плесканий жидкости в упругой цилиндрической оболочке. Вісник Харківського національного університету №1015, с. 66-72, 2012.
Published
2015-05-29
How to Cite
Degtyarev, K. G., Gnitko, V. I., Naumenko, V. V., & Strelnikova, E. A. (2015). Free vibrations of an elastic cylindrical shell coupled with liquid sloshing. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 26(1156), 63-75. Retrieved from https://periodicals.karazin.ua/mia/article/view/14215
Issue
Section
Статті