A method synthesis of selection function scalar convolutions for the multi-objective decision-making problems
Keywords:
mathematical modeling; stochastic optimization; computational methods
Abstract
The statement of the estimation problem for selection functions and sought values in multi-objective problems is considered. The authors propose a method of synthesis of selection function scalar convolutions in multi-objective problems of mathematical model identification, optimization and decision-making. The types of scalar convolutions of selection functions have been obtained, which are specific to some practical problems of such kind. Application of the scalar convolutions as a tool for solution synthesis with the help of regularizing algorithms provides the stable effective estimates of values sought when data are a priori uncertain.
Downloads
Download data is not yet available.
References
Aivazian S.A. Multivariate observation classification / S.A. Ayvazyan, Z.I. Bezhaeva, O.V. Staroverov. – M.: Statistics, 1974. – 240 p.
Tikhonov A.N. Methods of solving ill-posed problems / A.N. Tikhonov, V.Y. Arsenin. – Moscow: Nauka, ch. ed. sci. litas., 1986. – 288 p.
Uryasev S.P., Adaptive algorithms in stochastic optimization and game theory / Edited by J.M. Yermolyeva. – M.: science, ch. ed .fiz. mat. litas., 1990. – 184 p.
Li M. A Multi-Objective Genetic Algorithm for Robust Design Optimization / M. Li, S. Azarm, V. Aute. – Proceedings of GECCO 2005, Washington, D.C., USA, June 25-29.– рр. 771-778.
Egorov I.N. Multi-Objective Robust optimization of Air Engine Using IOSO Technology / I.N. Egorov, G.V. Kretinin, I.A. Leshchenko, S.V. Kuptzov. – Conference ASME Turbo Expo 2004, Vienna, Austria, June 14-17. – 7 p. (ASME Paper GT2004-53504).
Egorov I.N. Stochastic Optimization of Parameters and Control Laws of the Aircraft Gas-Turbine Engines – a Step to a Robust Design / I.N. Egorov, G.V. Kretinin, I.A. Leshchenko – Elsevier Science Ltd, “Inverse Problem in Engineering Mechanics III”, (2002), pp.345-353.
Egorov I.N. Search for Compromise Solution of the Multistage Axial Compressor’s Stochastic Optimization Problem / I.N. Egorov, G.V. Kretinin, – World Publishing Corporation, Aerothermodynamics of internal flows III, Beijing, China, (1996), pp. 112-120.
J. Marczyk Stochastic Multidisciplinary Improvement: Beyond Optimization – AIAA- 2000-4929, Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, USA, (2000).
Menyailov A.V. Application of evolutionary methods for solving optimization gas turbine compressor / A.V. Menyailov, A.A Tronchukб K.M. Ugryumova, // Aerospace techniques and technology, 2008, No. 5 (52), pp. 59-65.
Ugryumov M.L. Gas Turbine Engine Elements Systematic Improvement on the Base of Inverse Problem Concept by Stochastic Optimization Methods / M.L. Ugryumov, A.A. Tronchuk, V.E. Afanasjevska, A.V. Myenyaylov – Abstracts Book and CD–ROM Proceedings of the 20-th ISABE Conference, Gothenburg, Sweden, ISABE Paper No. 2011–1255.
Tronchuk A.A., Mathematical models and evolutionary method for solving problems of stochastic optimization / A.A. Tronchuk, E.M. Ugryumova // Visnyk of Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics. – 2012 – 19 issue (№ 1015). – pp. 292-305.
Meniailov Ie.S. Formation of image of technical systems under conditions of input data uncertainty based on artificial intelligence methods / Ie.S. Meniailov, K.M. Ugryumova, A.A Tronchuk, S.V. Сhernysh // Aerospace techniques and technology. – 2014. – № 7 (114). – рр. 169-174.
Tikhonov A.N. Methods of solving ill-posed problems / A.N. Tikhonov, V.Y. Arsenin. – Moscow: Nauka, ch. ed. sci. litas., 1986. – 288 p.
Uryasev S.P., Adaptive algorithms in stochastic optimization and game theory / Edited by J.M. Yermolyeva. – M.: science, ch. ed .fiz. mat. litas., 1990. – 184 p.
Li M. A Multi-Objective Genetic Algorithm for Robust Design Optimization / M. Li, S. Azarm, V. Aute. – Proceedings of GECCO 2005, Washington, D.C., USA, June 25-29.– рр. 771-778.
Egorov I.N. Multi-Objective Robust optimization of Air Engine Using IOSO Technology / I.N. Egorov, G.V. Kretinin, I.A. Leshchenko, S.V. Kuptzov. – Conference ASME Turbo Expo 2004, Vienna, Austria, June 14-17. – 7 p. (ASME Paper GT2004-53504).
Egorov I.N. Stochastic Optimization of Parameters and Control Laws of the Aircraft Gas-Turbine Engines – a Step to a Robust Design / I.N. Egorov, G.V. Kretinin, I.A. Leshchenko – Elsevier Science Ltd, “Inverse Problem in Engineering Mechanics III”, (2002), pp.345-353.
Egorov I.N. Search for Compromise Solution of the Multistage Axial Compressor’s Stochastic Optimization Problem / I.N. Egorov, G.V. Kretinin, – World Publishing Corporation, Aerothermodynamics of internal flows III, Beijing, China, (1996), pp. 112-120.
J. Marczyk Stochastic Multidisciplinary Improvement: Beyond Optimization – AIAA- 2000-4929, Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, USA, (2000).
Menyailov A.V. Application of evolutionary methods for solving optimization gas turbine compressor / A.V. Menyailov, A.A Tronchukб K.M. Ugryumova, // Aerospace techniques and technology, 2008, No. 5 (52), pp. 59-65.
Ugryumov M.L. Gas Turbine Engine Elements Systematic Improvement on the Base of Inverse Problem Concept by Stochastic Optimization Methods / M.L. Ugryumov, A.A. Tronchuk, V.E. Afanasjevska, A.V. Myenyaylov – Abstracts Book and CD–ROM Proceedings of the 20-th ISABE Conference, Gothenburg, Sweden, ISABE Paper No. 2011–1255.
Tronchuk A.A., Mathematical models and evolutionary method for solving problems of stochastic optimization / A.A. Tronchuk, E.M. Ugryumova // Visnyk of Karazin Kharkiv National University. Ser. Mathematics, Applied Mathematics and Mechanics. – 2012 – 19 issue (№ 1015). – pp. 292-305.
Meniailov Ie.S. Formation of image of technical systems under conditions of input data uncertainty based on artificial intelligence methods / Ie.S. Meniailov, K.M. Ugryumova, A.A Tronchuk, S.V. Сhernysh // Aerospace techniques and technology. – 2014. – № 7 (114). – рр. 169-174.
Published
2015-10-26
How to Cite
СhernyshS. V., Meniailov, I. S., Ugryumova, K. M., & Ugryumov, M. L. (2015). A method synthesis of selection function scalar convolutions for the multi-objective decision-making problems. Bulletin of V.N. Karazin Kharkiv National University, Series «Mathematical Modeling. Information Technology. Automated Control Systems», 27, 172-180. Retrieved from https://periodicals.karazin.ua/mia/article/view/14208
Issue
Section
Статті