The two-sided method in numerical analysis of one microelectromechanical system
Abstract
In this paper, we consider the problem of numerical analysis of an electrostatic microelectromechanical system. Microelectromechanical systems are devices of microsystem technology that combine electronic and mechanical components of micron sizes. Electrostatic activation is one of the most common types of activation of microelectromechanical systems used in accelerometers, optical switches, micropumps, etc. The disadvantages of such devices consist in their pull-instability. This effect occurs when the voltage applied to the moving electrode exceeds the critical value. As a result the system loses its stationary configuration. To ensure the stable operation of the microelectromechanical system, it is proposed to control the dielectric properties of the device components. For a mathematical modeling of the process, we use a nonlinear elliptic equation with the Laplace operator and the given boundary conditions. To construct an approximate solution of the problem under consideration, we propose to use methods of nonlinear analysis in semi-ordered spaces, in particular, the results of the solvability of nonlinear operator equations with a monotone operator obtained by M.A. Krasnosel’skij. The boundary value problem that modes a microelectromechanical system is reduced to the Hammerstein integral equation using the Green's function. The paper substan-tiates the possibility of constructing two-sided approximations to a positive solution of the problem. The method is illustrated by computational experiments for the problem considered in a unit circular domain. The computational experiments are presented in a numerical and graphical format.
Downloads
References
/References
N. A. Alfutov Fundamentals of calculation for the stability of elastic systems, M.: Mashinostroenie, 1978 (in Russian).
O. S. Konchakovska, M. V. Sidorov “Numerical analysis of one nonlinear elliptic equation that modelling microelectromechanical system”, Radioelektronika i informatika, vol. 73, no. 2, pp. 23-29, 2016 (in Ukrainian).
M. A. Krasnosel’skij, Positive Solutions of Operator Equations. Moscow: Fizmatgiz, 1962 (in Russian).
N. I. Muhurov, G. I. Efremov Electromechanical microdevices, Minsk: Belarus. navuka, 2012 (in Russian).
V. I. Opojtsev and T. A. Khurodze, Nonlinear Operators in Spaces with a Cone, Tbilisi, USSR: Izdatel’stvo Tbilisskogo Universiteta, 1984 (in Russian).
P. Esposito “Compactness of a nonlinear eigenvalue problem with a singular nonlinearity”, Communications in Contemporary Mathematics, vol. 10, no. 1, pp. 17-45, 2008.
P. Esposito, N. Ghoussoub and Y. Guo Mathematical analysis of partial differential equations modeling electrostatic MEMS, American Mathematical Soc., 2010.
N. Ghoussoub, Y. Guo “On the partial differential equations of electro-static MEMS devices: stationary case”, SIAM Journal on Mathematical Analysis, vol. 38, no. 5, pp. 1423-1449, 2007.
Y. Guo, Z. Pan and M. J. Ward “Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties”, SIAM Journal on Applied Mathematics, vol. 66, no. 1, pp. 309-338, 2005.
Z. Guo and J. Wei “Infinitely many turning points for an elliptic problem with a singular non-linearity” Journal of the London Mathematical Society, vol. 78, no. 1, pp. 21-35, 2008.
F. Lin and Y. Yang “Nonlinear non-local elliptic equation modeling electrostatic actuation”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2081, pp. 1323-1337, 2007.
J. A. Pelesko “Mathematical modeling of electrostatic MEMS with tailored dielectric properties”, SIAM Journal on Applied Mathematics, vol. 62, no. 3, pp. 888-908, 2002.
Алфутов Н. А. Основы расчета на устойчивость упругих систем / Н. А. Алфутов. – М.: Машиностроение, 1978. – 312 с.
Кончаковська О. С. Чисельний аналіз одного нелінійного еліптичного рівняння, що виникає при моделюванні мікроелектромеханічних систем /О. С. Кончаковська, М. В. Сидоров // Радіоелектроніка та інформатика. – 2016. – 73, № 2. – С.23-29.
Красносельский М. А. Положительные решения операторных уравнений / М. А. Красносельский. – М.: Физматгиз, 1962. – 394 с.
Мухуров Н. И. Электромеханические микроустройства / Н. И. Мухуров, Г. И. Ефремов. – Минск: Беларус. навука, 2012. – 257 с.
Опойцев В. И. Нелинейные операторы в пространствах с конусом / В. И. Опойцев, Т. А. Хуродзе. – Тбилиси: Изд-во Тбилис. ун-та, 1984. – 246 с.
Esposito P. Compactness of a nonlinear eigenvalue problem with a singular nonlinearity / P. Esposito // Communications in Contemporary Mathematics. – 2008. – 10, № 01. – P.17-45.
Esposito P. Mathematical analysis of partial differential equations modeling electrostatic MEMS / P. Esposito, N. Ghoussoub, Y. Guo. – American Mathematical Soc., 2010.
Ghoussoub N. On the partial differential equations of electro-static MEMS devices: stationary case / N. Ghoussoub, Y. Guo // SIAM Journal on Mathematical Analysis. – 2007. – 38, № 5. – P.1423-1449.
Guo Y. Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties / Y. Guo, Z. Pan, M. J. Ward // SIAM Journal on Applied Mathematics. – 2005. – 66, № 1. – P.309-338.
Guo Z. Infinitely many turning points for an elliptic problem with a singular non-linearity / Z. Guo, J. Wei // Journal of the London Mathematical Society. – 2008. – 78, № 1. – P.21-35.
Lin F. Nonlinear non-local elliptic equation modeling electrostatic actuation / F. Lin, Y. Yang // Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. – The Royal Society, 2007. – 463, №. 2081. – P.1323-1337.
Pelesko J. A. Mathematical modeling of electrostatic MEMS with tailored dielectric properties / J. A. Pelesko // SIAM Journal on Applied Mathematics. – 2002. – 62, № 3. – P.888-908.