Plane thermoelastic deformation of a multilayer plate with elastic links between its layers
Abstract
Тhe method of the solution of the stationary plane thermoelastic problem of a multilayer plate with elastic links between its layers is proposed. It is assumed that tangential (normal) elastic links between two neighboring layers exist if the difference between the horizontal (vertical) displacements of points of the upper boundary of the lower layer and of the corresponding points of the lower boundary of the upper layer are proportional to the tangential (normal) stresses on their boundary. It is assumed that the conditions of perfect thermal contact are satisfied on their common boundaries. The technique is based on a compliance functions method and a Fourier transformation method. The Fourier transforms of displacements, stresses, and functions used to describe temperature and flow at the points of a layer can be represented in the form of linear combinations of the auxiliary functions. The auxiliary functions are connected with the Fourier transforms of displacements, stresses, and functions used to describe temperature and flow at the points of the upper boundary of the corresponding layer. For considered problem six auxiliary functions can be found from boundary conditions. Using the conditions on the common boundaries of the layers and the boundary conditions the recurrent formulas for finding other auxiliary functions are constructed. We’ve proved that the auxiliary functions are dependent. This dependence can be represented in the matrix form using so-called compliance functions. We’ve constructed the recurrence relations for the compliance functions of the termoelastic plate. The algorithm for solving the considered problem is formulated. For a two-layer plate subjected to the action of thermal load the influence of the coefficients of elastic links, the coefficients of thermal expantion and the coefficients of thermal conductivity on the distribution of the normal stresses and the tangential stresses on its common boundary is investigated. The proposed method allows to analyze the influence of the mechanical and temperature characteristics of the layers on the distribution of stresses and displacements in the layers of the plate with any finite number of the layers.
Downloads
References
/References
S. S. Vel, and R. C. Batra, "Generalized Plane Strain Thermoelastic Deformation of Laminated Anisotropic Thick Plates." International Journal of Solids and Structures, vol. 38, no. 8, pp. 1395–1414. 2001.
R. M. Kushnir, B. V.Protsyuk, and V. M. Synyuta, "Temperature Stresses and Displacements in a Multilayer Plate with Nonlinear Conditions of Heat Exchange," Materials Science, vol. 38, no. 6, pp. 798–808, 2002.
Ch.-Ch. Ma, and Sh.-W. Chang, "Analytical exact solutions of heat conduction problems for anisotropic multi-layered media," International Journal of Heat and Mass Transfer, vol. 47, no. 8-9, pp. 1643–1655, 2004.
S. Brischetto, and E. Carrera, "Coupled thermo-mechanical analysis of one-layered and multilayered plates." Composite Structures, vol. 92, no. 8, pp. 1793–1812, 2010.
A.V. Attekov, I.K. Volkov, and E.S. Tverskaya, "Temperature field in a multilayer half space for the imperfect thermal contact of layers." Izv. Ross. Acad. Nauk, Energet, no. 3, pp. 83–91, 2010.
Ch.-Ch. Ma, and Y.-T. Chen, "Theoretical analysis of heat conduction problems of nonhomogeneous functionally graded materials for a layer sandwiched between two half-planes." Acta Mechanica, vol. 221, no. 3, pp. 223–237, 2011.
M. Cetkovic, "Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model." Composite Structures, vol. 125, pp. 388–399, 2015.
A. M. Zenkour, and D. A. Maturi, "Termoelastic bending response of laminated plate resting on elastic foundations," Scientia Iranica, vol. 22, no. 2, pp. 287–298, 2015.
S. Boyko, and H. Velichko, "Analytical method for determining the stationary thermal fields in layered structures," Bulletin of TNTU, vol. 77, no. 1, pp. 257–266, 2015.
I. G. Velychko, and I. G. Tkachenko, "Plane termoelastic deformation of multilayer foundation," Visn. Dnipr. Univ. Mekh., vol. 1, no. 8, pp. 154–161, 2004.
J. P. Jones, and J. S. Whitter, "Waves at a flexibly bonded interface," Trans. ASME. Ser. E. J. Appl. Mech., vol. 34, no. 4, pp. 178–183, 1967.
V. M. Barsegyan, and A. M. Khachatryan, "On Asymptotic solution of a mixed boundary problem for a three-layered stripe under different conditions of the contact between the stripes," The Proceedings of National Academy of Sciences of Armenia. Mechanics, vol. 54, no. 1, pp. 17–25, 2001
L. A. Aghalovyan, and R. S. Gevorgyan, "Asymptotic solutions of stationary problems of thermal conductivity and thermoelasticity with nonclassical boundary conditions for the two-layer plates with full and incomplete contact layers," The Proceedings of National Academy of Sciences of Armenia. Mechanics, vol. 70, no. 2, pp. 3–14, 2017.
A. V. Pozhuev, and E. N. Mihaylutsa, "Action non-stationary load on a two-layer cylindrical shell with an elastic interlayer," Journal of the Sevastopol National Technical University. Series: Mechanics, Power Engineering, Ecology, vol. 88. pp. 5–12. 2008.
A. Pozhuev, and E. Mihaylutsa, "Non-stationary spatial deformation of the final sizes two-layer plate with nonideal communication," Innovative materials and technologies in metallurgy and mechanical engineering, no.1, pp. 139–143, 2011.
N. M. Antonenko, "The plane deformation of the multilayer plates with elastic connections between the layers," Bulletin of V. Karazin Kharkiv National University. Series «Mathematical Modelling. Information Technology. Automated Control Systems», vol. 23, no. 1089, pp. 15–21, 2013
N. M. Antonenko, "Plane Thermoelastic Deformation of a Multilayer Plate Elastically Coupled with a Rigid Half Plane," Materials Science, vol. 53, no. 3, pp. 407–416, 2017.
A. D. Kovalenko, Termoelasticity. Kiev: Vyshcha Shcola, 1975.
Vel S. S., Batra R. C. Generalized Plane Strain Thermoelastic Deformation of Laminated Anisotropic Thick Plates. International Journal of Solids and Structures. 2001. Vol. 38, № 8. Р. 1395–1414.
Kushnir R.M., Protsyuk B.V., Synyuta V.M. Temperature Stresses and Displacements in a Multilayer Plate with Nonlinear Conditions of Heat Exchange. Materials Science. 2002. Vol. 38, № 6. P. 798 – 808.
Chien-Ching Ma, Shin-Wen Chang Analytical exact solutions of heat conduction problems for anisotropic multi-layered media. International Journal of Heat and Mass Transfer. 2004. Vol. 47, № 8-9. P. 1643–1655.
Brischetto S., Carrera E. Coupled thermo-mechanical analysis of one-layered and multilayered plates. Composite Structures. 2010. Vol. 92, № 8. P. 1793–1812.
Аттеков А. В., Волков И. К., Тверская Е. С. Температурное поле многослойного полупространства при неидеальном тепловом контакте между слоями. Известия Российской академии наук. Энергетика. 2010. № 3. С. 83–91.
Chien-Ching Ma, Yi-Tzu Chen Theoretical analysis of heat conduction problems of nonhomogeneous functionally graded materials for a layer sandwiched between two half-planes. Acta Mechanica. 2011. Vol. 221, № 3. P. 223–237.
Cetkovic M. Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model. Composite Structures. 2015. Vol. 125. P. 388–399.
Zenkour A. M., Maturi D. A. Termoelastic bending response of laminated plate resting on elastic foundations. Scientia Iranica. 2015. Vol. 22, № 2. P. 287–298.
Бойко С. Б., Величко О. В. Аналітичний метод визначення теплових стаціонарних полів у шаруватих конструкціях. Вісник Тернопільського національного технічного університету. 2015. № 1, т. 77. С. 257–266.
Величко І. Г., Ткаченко І. Г. Плоска термопружна деформація багатошарової основи. Вісник Дніпропетровського університету. Сер. Механіка. 2004. Вип. 8, т. 1. С. 154–161.
Jones J. P., Whitter J. S. Waves at a flexibly bonded interface. Trans. ASME. Ser. E. J. Appl. Mech. 1967. Vol. 34, № 4. P. 178–183.
Барсегян В. М., Хачатрян А. М. Об асимптотическом решении смешанной краевой задачи для трехслойной полосы при различных условиях контакта слоев. Изв. НАН Армении. Механика. 2001. № 1, т. 54. С. 17–25.
Агаловян Л. А., Геворкян Р. С. Асимптотические решения несвязных задач стационарной теплопроводности и термоупругости для двухслойных пластин с неклассическими граничными условиями. Изв. НАН Армении. Механика. 2017. № 2, т. 70. С. 3–14.
Пожуев А. В., Михайлуца Е. Н. Действие нестационарной нагрузки на двухслойную цилиндрическую оболочку с упругой прослойкой. Вісник СевДТУ. Механіка, енергетика, екологія : зб. наук. пр. 2008. Вип. 88. С. 5–12.
Пожуев А. В., Михайлуца Е. Н. Нестационарная пространственная деформация двухслойной пластины конечных размеров с неидеальной связью. Нові матеріали і технології в металургії та машинобудуванні. 2011. № 1. С. 139–143.
Антоненко Н. М. Плоска деформація багатошарової плити з пружними зв’язками між шарами. Вісник Харківського національного університету імені В.Н. Каразіна. Сер. : Математичне моделювання. Інформаційні технології. Автоматизовані системи управління. 2013. Вип. 23, № 1089. С. 15–21.
Antonenko N. M. Plane Thermoelastic Deformation of a Multilayer Plate Elastically Coupled with a Rigid Half Plane. Materials Science. 2017. Vol. 53, № 3. Р. 407–416.
Коваленко А. Д. Термоупругость. Київ : Вища школа, 1975. 216 с.