Review nematodes in tea cultivation: pathogenesis and plant défense responses
Abstract
Purpose. To identify the complex relationship between tea plants and important plant-parasitic nematodes, focusing on the severe damage these pests inflict on roots, as well as the sophisticated defense strategies employed by tea plants, particularly their synthesis of protective secondary metabolites to combat nematode attacks
Results. Plant-parasitic nematodes pose a serious economic danger to Camellia sinensis, the world's most important tea crop, resulting in yield losses of 11–55% and up to $1 billion yearly. Stunting, wilting, and decreased tea output are caused by around 80 nematode species that harm roots, including Pratylenchus, Radopholus, Meloidogyne, and Hemicriconemoides. Due to their immobility, tea plants have developed complex defense mechanisms. These include the formation of nematicidal secondary metabolites (polyphenols, alkaloids, terpenoids), systemic signaling pathways triggered by phytohormones (ethylene, jasmonate, and salicylic acid) that activate defense genes, and physical barriers such as lignin and suberin in cell walls. Nematode control is also aided by beneficial soil bacteria.
Conclusions. For sustainable management, it is essential to comprehend relationships. In order to secure the economic future of the tea business, future research should take advantage of natural defences to improve integrated pest control
Downloads
References
Zou, Y., Shen, F., Zhong, Y., Lv, C., Pokharel, S. S., Fang, W., & Chen, F. (2022). Impacts of inter-cropped maize ecological shading on tea foliar and functional components, insect pest diversity and soil microbes. Plants, 11(14), 1883. https://doi.org/10.3390/plants11141883
Han, Z., Zhang, C., Zhang, H., Duan, Y., Zou, Z., Zhou, L., ... & Ma, Y. (2022). CsMYB transcription fac-tors participate in jasmonic acid signal transduction in response to cold stress in tea plant (Camellia sinensis). Plants, 11(21), 2869. https://doi.org/10.3390/plants11212869
Xia, E., Tong, W., Hou, Y., An, Y., Chen, L., Wu, Q., ... & Wan, X. (2020). The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adapta-tion. Molecular plant, 13(7), 1013-1026. https://doi.org/10.1016/j.molp.2020.04.010
Yue, C., Peng, H., Li, W., Tong, Z., Wang, Z., & Yang, P. (2022). Untargeted metabolomics and tran-scriptomics reveal the mechanism of metabolite differences in spring tender shoots of tea plants of dif-ferent ages. Foods, 11(15), 2303. https://doi.org/10.3390/foods11152303
Chen, Y., Cheng, S., Dai, J., Wang, L., Xu, Y., Peng, X., ... & Peng, C. (2021). Molecular mechanisms and applications of tea polyphenols: A narrative review. Journal of Food Biochemistry, 45(10), e13910. https://doi.org/10.1111/jfbc.13910
Wang, W., Zhou, X., Hu, Q., Wang, Q., Zhou, Y., Yu, J., ... & Li, X. (2025). Lignin Metabolism Is Crucial in the Plant Responses to Tambocerus elongatus (Shen) in Camellia sinensis L. Plants, 14(2), 260. https://doi.org/10.3390/plants14020260
Kachhawa, D., & Kumawat, K. (2018). Oligonychus coffeae: red spider mite of tea: a review. J Entomol Zool Stud, 6(3), 519-524. https://www.academia.edu/download/89555883/6-3-2-927.pdf
Rahanandeh, H., Khodakaramian, G., Hassanzadeh, N., Seraji, A., Asghari, S. M., & Tarang, A. R. (2012). Inhibition of tea root lesion nematode, Pratylenchus loosi, by rhizospher bacteria. https://www.researchgate.net/publication/339540753_Inhibition_of_Tea_Root_Lesion_Nematode_Pratylenchus_Loosi_by_rhizospher_bacteria
EFSA Panel on Plant Health (PLH), Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., ... & Reignault, P. L. (2024). Pest categorisation of Pratylenchus loosi. EFSA Journal, 22(1), e8548. https://doi.org/10.2903/j.efsa.2024.8548
Sivapalan, P. (1972). Nematode pests of tea. Nematode pests of tea. https://www.cabidigitallibrary.org/doi/full/10.5555/19722001016
Chen, Z. M., & Chen, X. F. (1989). An analysis of world tea pest fauna. J. Tea Sci, 9(1), 13-22. http://www.tscha.org/CN/abstract/abstract16.shtml
Paul, S. K., Ahmed, M., & Mamun, M. S. A. (2014). Biopesticides: A potential tool for the management of plant parasitic nematodes in tea. Tea Journal of Bangladesh, 43, 24-33. https://www.bjstea.org/tjb_vol_43_2014/5.%2520Biopesticides-%2520A%2520Potential%2520Tool%2520for%2520the%2520Management%2520of%2520Plant%2520Parasitic%2520Nematodes%2520in%2520Tea.pdf
Wink, M. (2008). Plant secondary metabolism: diversity, function and its evolution. Natural Product Communications, 3(8), 1934578X0800300801. https://doi.org/10.1177/1934578X0800300801
Petschenka, G., Halitschke, R., Züst, T., Roth, A., Stiehler, S., Tenbusch, L., ... & Exnerová, A. (2022). Sequestration of defences against predators drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae). The American Naturalist, 199(6), E211-E228. https://www.journals.uchicago.edu/doi/pdf/10.1086/719196
Freeman, B., & Beattie, G. (2008). An overview of plant defences against pathogens and herbivores. https://www.apsnet.org/edcenter/disimpactmngmnt/topc/Pages/OverviewOfPlantDiseases.aspx
Jan, R., Asaf, S., Numan, M., & Kim, K. M. (2021). Plant secondary metabolite biosynthesis and tran-scriptional regulation in response to biotic and abiotic stress conditions. Agronomy. 2021; 11 (5): 968. https://doi.org/10.3390/agronomy11050968
Teklić, T., Parađiković, N., Špoljarević, M., Zeljković, S., Lončarić, Z., & Lisjak, M. (2021). Linking abiotic stress, plant metabolites, biostimulants and functional food. Annals of Applied Biology, 178(2), 169-191. https://doi.org/10.1111/aab.12651
Deka, B., Babu, A., Baruah, C., & Barthakur, M. (2021). Nanopesticides: A systematic review of their prospects with special reference to tea pest management. Frontiers in Nutrition, 8, 686131. https://doi.org/10.3389/fnut.2021.686131
Naskar, S., Roy, C., Ghosh, S., Mukhopadhyay, A., Hazarika, L. K., Chaudhuri, R. K., ... & Chakraborti, D. (2021). Elicitation of biomolecules as host defense arsenals during insect attacks on tea plants (Ca-mellia sinensis (L.) Kuntze). Applied microbiology and biotechnology, 1-13. https://link.springer.com/article/10.1007/s00253-021-11560-z
War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant signaling & behavior, 7(10), 1306-1320. https://doi.org/10.4161/psb.21663
Sharma, G., Kumar, A., Naushad, M., Al-Misned, F. A., El-Serehy, H. A., Ghfar, A. A., ... & Stadler, F. J. (2020). Graft copolymerization of acrylonitrile and ethyl acrylate onto Pinus roxburghii wood surface enhanced physicochemical properties and antibacterial activity. Journal of Chemistry, 2020, 1-16. https://doi.org/10.1155/2020/6285354
Neves, D., Figueiredo, A., Maia, M., Laczko, E., Pais, M. S., & Cravador, A. (2023). A Metabolome Analysis and the Immunity of Phlomis purpurea against Phytophthora cinnamomi. Plants, 12(10), 1929. https://doi.org/10.3390/plants12101929
Koza, N. A., Adedayo, A. A., Babalola, O. O., & Kappo, A. P. (2022). Microorganisms in plant growth and development: roles in abiotic stress tolerance and secondary metabolites secretion. Microorgan-isms, 10(8), 1528. https://doi.org/10.3390/microorganisms10081528
Simsek, M., & Whitney, K. (2024). Examination of primary and secondary metabolites associated with a plant-based diet and their impact on human health. Foods, 13(7), 1020. https://doi.org/10.3390/foods13071020
Mamun, M. S. A., Ahmed, M., & Paul, S. K. (2011). Control of plant parasitic nematodes of tea soil us-ing different species of green crops in Bangladesh. Tea Journal of Bangladesh, 40, 1-7. https://www.bjstea.org/tjb_vol_40_2011/1.%2520Control%2520of%2520Plant%2520Parasitic%2520Nema-todes%2520of%2520Tea%2520Soil%2520Using%2520Different%2520Species%2520of%2520Green%2520Crops%2520in%2520Bangladesh.pdf
Huang, L., Zhuang, Y., & Liu, Q. (2023). A mathematical model study on plant root pest management. AIMS Mathematics, 8(4), 9965-9981. https://www.aimspress.com/article/doi/10.3934/math.2023504
Johnson, S. N., Crawford, J. W., Gregory, P. J., Grinev, D. V., Mankin, R. W., Masters, G. J., ... & Zhang, X. (2007). Non‐invasive techniques for investigating and modelling root‐feeding insects in managed and natural systems. Agricultural and Forest Entomology, 9(1), 39-46. https://doi.org/10.1111/j.1461-9563.2006.00315.x
Zhou, D., Feng, H., Schuelke, T., De Santiago, A., Zhang, Q., Zhang, J., ... & Wei, L. (2019). Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection. Microbial Ecology, 78(2), 470-481. https://link.springer.com/article/10.1007/s00248-019-01319-5
Márquez, M. 2001. Efecto de la mecanización sobre la población de plagas de la raíz en caña de azúcar y su estimación con diferentes tamaños de unidad de muestreo. In: Memoria X Congreso Nacional de la Caña de Azúcar y II Simposio Nacional de Plagas. Guatemala, ATAGUA. pp. 15-20. https://dialnet.unirioja.es/descarga/libro/572719.pdf#page=217
Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., ... & Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194-198. https://www.nature.com/articles/s41586-019-1418-6
MONJIL, M. S. (2024). CURRENT STATUS OF NEMATODE PROBLEMS OF CROPS IN BANGLA-DESH. Nematode Problems in Crops and their Management in South Asia, 73. https://www.researchgate.net/profile/Shanowly-Mondal-Ghosh/publication/384253890_Nematode_Problems_in_Crops_and_their_Management_in_South_Asia_hard_man_v1_1/links/66f14c6119c9496b1fb7ea77/Nematode-Problems-in-Crops-and-their-Management-in-South-Asia-hard-man-v1-1.pdf
Al-Ghamdi, A. A. M. (2021). Relationship between nematodes and some soil properties in the rhizo-sphere of banana plants. International Letters of Natural Sciences, 82. https://doi.org/10.18052/www.scipress.com/ILNS.82.1
Orisajo, S. B. (2012). Distribution of plant-parasitic nematodes associated with tea in Nigeria. World journal of Agricultural sciences, 8(5), 459-463. https://www.idosi.org/ajbas/ajbas5(4)13/5.pdf
EFSA Panel on Plant Health (PLH), Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., ... & Reignault, P. L. (2024). Pest categorisation of Pratylenchus loosi. EFSA Journal, 22(1), e8548. https://doi.org/10.2903/j.efsa.2024.8548
Amarasena, P. G. D. S., Mohotti, K. M., De Costa, D. M., & Fosu-Nyarko, J. (2020). Morphometric and molecular characterization of isolates of the root lesion nematode, Pratylenchus loosi infecting tea in Sri Lanka. Tropical Agricultural Research, 31(1). https://doi.org/10.4038/tar.v31i1.8344
Pourjam, E., Kheiri, A., & Geraert, E. (1997). The genus Pratylenchus Filip'jev, 1936 (Tylenchida: Pratylenchidae) from North of Iran. The genus Pratylenchus Filip'jev, 1936 (Tylenchida: Pratylenchi-dae) from North of Iran., 62(3a), 741-756. https://www.cabidigitallibrary.org/doi/full/10.5555/19981700196
Pourjame, E., Waeyenberge, L., Moens, M., & Geraert, E. (1999). Morphological, morphometrical and molecular study of Pratylenchus coffeae and P. loosi (Nematoda: Pratylenchidae). https://www.cabidigitallibrary.org/doi/full/10.5555/20001701238
Seraji, A., Pourjam, E., TANHA, M. Z., & SAFAEI, N. (2007). Biology and population dynamics of tea root lesion nematode (Pratylenchus loosi) in Iran. https://sid.ir/paper/48216/en
Kaneko, T., & Ichinohe, M. (1968). Notes on the nematode species and their bionomics associated with tea roots in Japan. Review of Plant Protection Research, 1, 122-124. https://www.cabidigitallibrary.org/doi/full/10.5555/19670801585
Park ByeongYong, P. B., Choi DongRo, C. D., Lee JaeKook, L. J., Choi YoungEoun, C. Y., & Shin Gil-Ho, S. G. (2002). An unrecorded species of Pratylenchus loosi Loof (Tylenchida: Pratylenchidae) from tea in Korea. https://koreascience.kr/article/JAKO200211921497549.pdf
Kidane, S. A., Meressa, B. H., Haukeland, S., Hvoslef-Eide, T., Magnusson, C., Couvreur, M., ... & Coyne, D. L. (2020). Occurrence of plant-parasitic nematodes on enset (Ensete ventricosum) in Ethio-pia with focus on Pratylenchus goodeyi as a key species of the crop. Nematology, 23(5), 529-541. https://brill.com/view/journals/nemy/23/5/article-p529_5.xml?language=en&srsltid=AfmBOop1qFraZztdG4cegzlY2t9j59ZbABnU0k-I_krbP0e8tEIvP-NA
Vilas, J. M., Romero, F. M., Rossi, F. R., Marina, M., Maiale, S. J., Calzadilla, P. I., ... & Gárriz, A. (2018). Modulation of plant and bacterial polyamine metabolism during the compatible interaction be-tween tomato and Pseudomonas syringae. Journal of plant physiology, 231, 281-290. https://doi.org/10.1016/j.jplph.2018.09.014
Barbosa, P., Faria, J. M., Cavaco, T., Figueiredo, A. C., Mota, M., & Vicente, C. S. (2024). Nematicidal activity of phytochemicals against the root-lesion nematode Pratylenchus penetrans. Plants, 13(5), 726. https://doi.org/10.3390/plants13050726
Abd-Elgawad, M. M. (2021). Optimizing safe approaches to manage plant-parasitic nematodes. Plants, 10(9), 1911. https://doi.org/10.3390/plants10091911
Sikder, M. M., & Vestergård, M. (2020). Impacts of root metabolites on soil nematodes. Frontiers in plant science, 10, 1792. https://doi.org/10.3389/fpls.2019.01792
Rahanandeh, H., Khodakaramian, G., Hassanzadeh, N., Seraji, A., & Asghari, S. M. (2013). Evaluation of antagonistic Pseudomonas against root lesion nematode of tea. http://dx.doi.org/10.12692/ijb/3.3.32-40
Campos, V. P., Sivapalan, P., & Gnanapragasam, N. C. (1990). Nematode parasites of coffee, cocoa and tea. https://www.cabidigitallibrary.org/doi/full/10.5555/19901146381
Djiwanti, S. R. (2019, March). Taxa status of some reported plant parasitic nematodes in Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 250, No. 1, p. 012100). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/250/1/012100/meta
Kuhlmann, U., Jenner, W., & Reeder, R. (2023). PlantwisePlus Annual Report 2022. https://www.plantwise.org/Uploads/Plantwise/PlantwisePlus/PlantwisePlus_Annual_Report_2022.pdf
Hulupi, R., Mulyadi, M., & Andayani, B. (2006). Distribution of Radopholus Similis and Pratylenchus CoffeaeNematodes in Coffee Plantation. Pelita Perkebunan, 23(3), 158458. https://www.neliti.com/publications/158458/distribution-of-radopholus-similisand-pratylenchus-coffeaenematodes-in-coffee-pl
Gnanapragasam, N. C. (1983). Incidence of nematode damage in the mid-country caused by the bur-rowing nematode, Radopholus similis. Tea Quarterly, 52(1). https://sljournals.tripod.com/tea-quaterly-abstracts/tq-abstracts-v52-n1.html#ganapragasam
Chitwood, D. J. (2003). Nematicides. Encyclopedia of agrochemicals. https://doi.org/10.1002/047126363X.agr171
Appel, H. M. (1993). Phenolics in ecological interactions: the importance of oxidation. Journal of chemical ecology, 19, 1521-1552. https://link.springer.com/article/10.1007/BF00984895
Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G., Deleury, E., ... & Wincker, P. (2008). Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature biotechnology, 26(8), 909-915. https://www.nature.com/articles/nbt.1482
Rusinque, L., Camacho, M. J., Serra, C., Nobrega, F., & Inacio, M. L. (2023). Root-knot nematode as-sessment: species identification, distribution, and new host records in Portugal. Frontiers in Plant Sci-ence, 14, 1230968. https://doi.org/10.3389/fpls.2023.1230968
Kamunya, S. M., Lang'at, J. K., Muoki, R. C., Nyabundi, K., Wachira, F. N., Otieno, W., & Sudoi, V. (2008). Performance of tea clones established in root knot nematode host spots under varying treat-ment regimes. https://www.cabidigitallibrary.org/doi/full/10.5555/20103355298
Smant, G., Helder, J., & Goverse, A. (2018). Parallel adaptations and common host cell responses ena-bling feeding of obligate and facultative plant parasitic nematodes. The Plant Journal, 93(4), 686-702. https://doi.org/10.1111/tpj.13811
Palomares-Rius, J. E., Escobar, C., Cabrera, J., Vovlas, A., & Castillo, P. (2017). Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Frontiers in plant science, 8, 288614. https://doi.org/10.3389/fpls.2017.01987
Gnanapragasam, N. C., & Mohotti, K. M. (2018). Nematode parasites of tea. In Plant parasitic nema-todes in subtropical and tropical agriculture (pp. 584-616). Wallingford UK: CAB International. https://doi.org/10.1079/9781786391247.0584
Kantor, C., Eisenback, J. D., & Kantor, M. (2024). Biosecurity risks to human food supply associated with plant-parasitic nematodes. Frontiers in Plant Science, 15, 1404335. https://doi.org/10.3389/fpls.2024.1404335
Handoo, Z. A., Skantar, A. M., Kantor, M. R., Hafez, S. L., & Hult, M. N. (2020). Molecular and morpho-logical characterization of the amaryllis lesion nematode, Pratylenchus hippeastri (Inserra et al., 2007), from California. Journal of Nematology, 52, e2020-58. https://doi.org/10.21307/jofnem-2020-058
Figueiredo, J., Vieira, P., Abrantes, I., & Esteves, I. (2022). Commercial potato cultivars exhibit distinct susceptibility to the root lesion nematode pratylenchus penetrans. Horticulturae, 8(3), 244. https://doi.org/10.3390/horticulturae8030244
Bahadur, A. (2022). Vegetables Crops in India. Nematodes: Recent advances, management and new perspectives, 3. https://www.intechopen.com/chapters/77474
Trinh, P. Q., Nguyen, C. N., Waeyenberge, L., Subbotin, S. A., Karssen, G., & Moens, M. (2004). Radopholus arabocoffeae sp. n.(Nematoda: Pratylenchidae), a nematode pathogenic to Coffea arabica in Vietnam, and additional data on R. duriophilus. Nematology, 6(5), 681-693. https://brill.com/view/journals/nemy/6/5/article-p681_6.xml
Bernard, G. C., Egnin, M., & Bonsi, C. (2017). The impact of plant-parasitic nematodes on agriculture and methods of control. In Nematology-concepts, diagnosis and control. IntechOpen. https://www.scirp.org/reference/referencespapers?referenceid=2575514
Djiwanti, S. R. (2019, March). Taxa status of some reported plant parasitic nematodes in Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 250, No. 1, p. 012100). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/250/1/012100/meta
Rusinque, L., Camacho, M. J., Serra, C., Nobrega, F., & Inacio, M. L. (2023). Root-knot nematode as-sessment: species identification, distribution, and new host records in Portugal. Frontiers in Plant Sci-ence, 14, 1230968. https://doi.org/10.3389/fpls.2023.1230968
Subbotin, S. A., Rius, J. E. P., & Castillo, P. (2021). Systematics of root-knot nematodes (Nematoda: Meloidogynidae) (Vol. 14). Brill. https://books.google.co.in/books?hl=en&lr=&id=xs87EAAAQBAJ&oi=fnd&pg=PR3&dq=76.%09Subbotin,+S.+A.,+Rius,+J.+E.+P.,+%26+Castillo,+P.+(2021).+Systematics+of+root-knot+nematodes+(Nematoda:+Meloidogynidae)+(Vol.+14).+Brill&ots=g2eW0hg5SX&sig=CiExGlpd4A8q54llB9oXktn8gy8&redir_esc=y#v=onepage&q&f=false
Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., ... & Perry, R. N. (2013). Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 14(9), 946-961https://doi.org/10.1111/mpp.12057
Sharma, H., & Chaubey, A. K. (2023). Molecular and phenotypic characterization of Hemicricone-moides rosae (Rathour et al., 2003) from mustard rhizosphere in India. The Journal of Basic and Ap-plied Zoology, 84(1), 16. https://link.springer.com/article/10.1186/s41936-023-00338-6
Maria, M., Cai, R., Castillo, P., & Zheng, J. (2018). Morphological and molecular characterisation of Hemicriconemoides paracamelliae sp. n.(Nematoda: Criconematidae) and two known species of Hemi-criconemoides from China. Nematology, 20(5), 403-422. https://brill.com/view/journals/nemy/20/5/article-p403_1.xml?srsltid=AfmBOoquG5CRSXJP1NNSxZ52bjdYXIcGJv0PhYPKzSIbckAFeUAKPFen
Khan, M. R., Phani, V., Chauhan, K., Somvanshi, V. S., Pervez, R., & Walia, R. K. (2019). Redescription and molecular characterisation of Hemicriconemoides rosae Rathour, Sharma, Singh & Ganguly, 2003 from rhizosphere of sugarcane in India. Nematology, 21(7), 767-778. https://brill.com/view/journals/nemy/21/7/article-p767_8.xml
Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., ... & Zhang, K. Q. (2015). Molecular mechanisms of nema-tode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annual review of phytopathology, 53, 67-95. https://doi.org/10.1146/annurev-phyto-080614-120336
Khanam, S. (2016). Characterisation of the interaction between rice and the parasitic nematode Ditylenchus angustus (Doctoral dissertation, Ghent University). https://core.ac.uk/download/pdf/55817068.pdf
Geraert, E. (2010). The Criconematidae of the world: identification of the family Criconematidae (Nematoda). Academia press. https://books.google.co.in/books?hl=en&lr=&id=mnfidGUVitoC&oi=fnd&pg=PA4&dq=63.%09Geraert,+E.+(2010).+The+Criconematidae+of+the+world:+identification+of+the+family+Criconematidae+(Nematoda).+Academia+press&ots=5-oFCgh-CHy&sig=eOM0ovyrqFoabtyaVaZpoS6IgGY&redir_esc=y#v=onepage&q=63.%09Geraert%2C%20E.%20(2010).%20The%20Criconematidae%20of%20the%20world%3A%20identification%20of%20the%20family%20Criconematidae%20(Nematoda).%20Academia%20press&f=false
Mirghasemi, N., Fanelli, E., Vovlas, A., Troccoli, A., Jamali, S., & De Luca, F. (2024). First Report of Hemicriconemoides kanayaensis (Nematoda: Criconematidae) on Tea Plantations in Iran. Journal of Nematology, 56(1), 20240044. https://doi.org/10.2478/jofnem-2024-0044
Takagi, K. (1969) Nematodes confronts tea plantations in Japan. Japanese Agricultural Research Quar-terly 4, 27–32. https://www.jircas.go.jp/en/publication/jarq/4/1-27-32
McSorley, R., Campbell, C. W., & Goldweber, S. (1981). Observations on a mango decline in south Florida. In Proceedings of the... annual meeting of the Florida State Horticultural Society (Vol. 93). https://ufdc.ufl.edu/UF00097625/00093/284
Copyright (c) 2025 G. Sharma, R. Routh , A. Chhetri , G. Barman

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors reserve the right of attribution for the submitted manuscript, while transferring to the Journal the right to publish the article under the Creative Commons Attribution License 4.0 International (CC BY 4.0). This license allows free distribution of the published work under the condition of proper attribution of the original authors and the initial publication source (i.e. the Journal)
Authors have the right to enter into separate agreements for additional non-exclusive distribution of the work in the form it was published in the Journal (such as publishing the article on the institutional website or as a part of a monograph), provided the original publication in this Journal is properly referenced
The Journal allows and encourages online publication of the manuscripts (such as on personal web pages), even when such a manuscript is still under editorial consideration, since it allows for a productive scientific discussion and better citation dynamics (see The Effect of Open Access).
