Підвищення продуктивності сонячних перовскітних елементів FASnI3 шляхом чисельного моделювання та оптимізації

  • Лахсен Кануні Лабораторія вдосконаленої автоматизації та системного аналізу (LAAAS), Департамент електроніки, Університет Батна 2, Батна, Алжир
  • Ламір Саїді Лабораторія вдосконаленої автоматизації та системного аналізу (LAAAS), Департамент електроніки, Університет Батна 2, Батна, Алжир
  • Абдеррахім Юсфі Лабораторія ETA, Департамент електроніки, Факультет науки і технологій, Університет Мохамеда Ель Бачіра Ель Ібрагімі, Бордж Бу Аррерідж, Алжир https://orcid.org/0000-0003-2071-728X
  • Окба Сайдані Лабораторія ETA, Департамент електроніки, Факультет науки і технологій, Університет Мохамеда Ель Бачіра Ель Ібрагімі, Бордж Бу Аррерідж, Алжир https://orcid.org/0000-0003-0507-5581
Ключові слова: сонячний елемент, FASnI3, SCAPS-1D, оптимізація, PCE

Анотація

Сонячні елементи на основі перовскіту в даний час привертають все більший інтерес дослідників і промисловості завдяки перевагам цього типу сонячних елементів, зокрема з точки зору простоти виробництва та багатообіцяючої ефективності перетворення електроенергії, яка нещодавно досягла надзвичайного рівня. Ця стаття зосереджена на чисельному моделюванні для покращення продуктивності конфігурації сонячної батареї на основі йодиду формамідинію олова (FASnI3) за допомогою використання діоксиду церію (CeO2) як ETL та полі (триариламіну) (PTAA) як HTL. Моделювання було виконано за допомогою інструменту Solar Cell Capacitance Simulator (SCAPS-1D) у спектрі AM 1.5 G. Було реалізовано інтенсивне моделювання для покращення вихідних параметрів запропонованої конфігурації на основі FASnI3 як поглинача. Запропонована структура (ITO/CeO2/FaSnI3/PTAA/Au) забезпечує велику ефективність перетворення потужності (PCE) 39,24%, напругу холостого ходу (VOC) 1,31 В, щільність струму короткого замикання (JSC) 33,7 мА/см2 і коефіцієнтом заповнення (FF) 90,12%.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

A.R. Mollick, and Md.A. Ashraf, “Numerical Simulation of Cs2AgBiBr6-based Perovskite Solar Cell with ZnO Nanorod and P3HT as the Charge Transport Layers,” Physica B: Condensed Matter, 618, 413187 (2021). https://doi.org/10.1016/j.physb.2021.413187

A. Yousfi, O. Saidani, Z. Messai, R. Zouache, et al., “Design and Simulation of a Triple Absorber Layer Perovskite Solar Cell for High Conversion Efficiency,” East European Journal of Physics, (4), 137-146 (2023). https://doi.org/10.26565/2312-4334-2023-4-14

NREL Efficiency chart, (2023), https://www.nrel.gov/pv/assets/images/cell-pv-eff-emergingpv.png

E. Zimmermann, K. Wong, M. Müller, H. Hu, P. Ehrenreich, et al., “Characterization of perovskite solar cells: Towards a reliable measurement protocol,” APL Materials, 4(9), 091901 (2016). https://doi.org/10.1063/1.4960759

O.A. Muhammed, E. Danladi, P.H. Boduku, J. Tasiu, M.S. Ahmad, and N. Usman, “Modeling and Simulation of Lead-Free Perovskite Solar Cell Using SCAPS-1D,” East European Journal of Physics, (2), 146-154 (2021). https://doi.org/10.26565/2312-4334-2021-2-12

C.H. Liao, Md.A. Mahmud, and A. Ho-Baillie, “Recent progress in layered metal halide perovskites for solar cells, photodetectors, and field-effect transistors,” Nanoscale, 15, 4219-4235 (2023). https://doi.org/10.1039/D2NR06496K

E. Danladi, D.S. Dogo, S.U. Michael, F.O. Uloko, and A.O. Salawu, “Recent Advances in Modeling of Perovskite Solar Cells Using SCAPS-1D: Effect of Absorber and ETM Thickness,” East European Journal of Physics, (4), 5-17 (2021). https://doi.org/10.26565/2312-4334-2021-4-01

S. Rabhi, H. Benzouid, A. Slami, and K. Dadda, “Modeling and Numerical Simulation of a CH3NH3SnI3 Perovskite Solar Cell Using the SCAPS1-D Simulator,” Eng. Proc. 56(1), 97 (2023). https://doi.org/10.3390/ASEC2023-15300

S. Imani, S.M. Seyed-Talebi, J. Beheshtian, et al., “Simulation and characterization of CH3NH3SnI3-based perovskite solar cells with different Cu-based hole transporting layers,” Appl. Phys. A, 129, 143 (2023). https://doi.org/10.1007/s00339-023-06428-0

L. Ghalmi, S. Bensmaine, and C.E.H. Merzouk, “Optimizing the Performance of Lead-free CH3NH3SnI3 Perovskite Solar Cells via Thickness, Doping, and Defect Density Control,” Journal of Science, Technology and Engineering Research, 4(1), 44-51 (2023). https://doi.org/10.53525/jster.1231984

M.K. Hossain, M. Rubel, G.F.I. Toki, et al., “Effect of Various Electron and Hole Transport Layers on the Performance of CsPbI3-Based Perovskite Solar Cells: A Numerical Investigation in DFT, SCAPS-1D, and wxAMPS Frameworks,” ACS Omega, 7, 43210−43230 (2022). https://doi.org/10.1021/acsomega.2c05912

E. Katunge, G. Njema, and J. Kibet, “Theoretical analysis of the electrical characteristics of lead‐free formamidinium tin iodide solar cell,” IET Optoelectronics, 17(5), 220-236 (2023). https://doi.org/10.1049/ote2.12104

P. Tiwari, M.F. Alotaibi, Y. Al-Hadeethi, V. Srivastava, et al., “Design and Simulation of Efficient SnS-Based Solar Cell Using Spiro-OMeTAD as Hole Transport Layer,” Nanomaterials, 12(14), 2506 (2022). https://doi.org/10.3390/nano12142506

A.B. Coulibaly, S.O. Oyedele, N.R. Kre, and B. Aka, “Comparative Study of Lead-Free Perovskite Solar Cells Using Different Hole Transporter Materials. Modeling and Numerical Simulation,” Modeling and Numerical Simulation of Material Science, 9(4), 97 107 (2019). https://doi.org/10.4236/mnsms.2019.94006

A.K. Al-Mousoi, M.K.A. Mohammed, R. Pandey, J. Madan, et al., “Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer,” RSC Adv. 50(12), 32365-32373 (2022). https://doi.org/10.1039/D2RA05957F

K. Ukoba, P.E. Imoisili, and T.C. Jen, “Numerical analysis and performance improvement of nanostructured Cu2O/TiO2pn heterojunction solar cells using SCAPS,” Materials Today: Proceedings, 38(2), 887-892 (2021). https://doi.org/10.1016/j.matpr.2020.05.111

M. Burgelman, P. Nollet, and S. Degrave, “Modelling polycrystalline semiconductor solar cells,” Thin Solid Films, 361–362, 527 532 (2000). https://doi.org/10.1016/S0040-6090(99)00825-1

S. Bhattarai, D. Borah, J. Rout, R. Pandey, J. Madan, et al., “Designing an efficient lead-free perovskite solar cell with green-synthesized CuCrO2 and CeO2 as carrier transport materials,” RSC Adv. 13(49), 34693-34702 (2023). http://dx.doi.org/10.1039/D3RA06722J

Sk.T. Ahamed, Ar. Basak, A. Mondal, “Device modeling and investigation of Sb-based low-cost heterojunction solar cells using SCAPS-1D,” Results in Optics, 10, 100364 (2023). https://doi.org/10.1016/j.rio.2023.100364

M. Ismail, M. Noman, S.T. Jan, and M. Imran, “Boosting efficiency of ecofriendly perovskite solar cell through optimization of novel charge transport layers,” R. Soc. Open Sci. 10(6), 230331 (2023). https://doi.org/10.1098/rsos.230331

S.T. Jan, and N. Muhammad, “Influence of layer thickness, defect density, doping concentration, interface defects, work function, working temperature and reflecting coating on lead-free perovskite solar cell,” Solar Energy, 237, 29-43 (2022). https://doi.org/10.1016/j.solener.2022.03.069

B. Atanu, R. Radhakrishnan, R. Nekovei, and R. Jeyakumar, “Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation,” Solar Energy, 196, 177-182 (2020). https://doi.org/10.1016/j.solener.2019.12.014

I. Mesquita, L. Andrade, and A. Mendes, “Temperature Impact on Perovskite Solar Cells Under Operation,” Chem. Sus. Chem. 12(10), 2186-2194 (2019). https://doi.org/10.1002/cssc.201802899

P. Roy, N.K. Sinha, and A. Khare, “An investigation on the impact of temperature variation over the performance of tin-based perovskite solar cell: A numerical simulation approach,” Materials Today: Proceedings, 39(5), 2022-2026 (2021). https://doi.org/10.1016/j.matpr.2020.09.281

H. Baig, H. Kanda, A.M. Asiri, M.K. Nazeeruddin, and T. Mallick, “Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems,” Sustainable Energy Fuels, 4(2), 528-537 (2020). http://dx.doi.org/10.1039/C9SE00550A

A. Gholami-Milani, S. Ahmadi-Kandjani, B. Olyaeefar, et al., “Performance analyses of highly efficient inverted all-perovskite bilayer solar cell,” Sci. Rep. 13, 8274 (2023). https://doi.org/10.1038/s41598-023-35504-x

R. Priyanka, T. Sanjay, and K. Ayush, “An investigation on the influence of temperature variation on the performance of tin (Sn) based perovskite solar cells using various transport layers and absorber layers,” Results in Optics, 4, 100083, (2021). https://doi.org/10.1016/j.rio.2021.100083

N. Rono, A.E. Merad, J.K. Kibet, et al., “A theoretical investigation of the effect of the hole and electron transport materials on the performance of a lead-free perovskite solar cell based on CH3NH3SnI3,” J. Comput. Electron. 20, 993–1005 (2021). https://doi.org/10.1007/s10825-021-01673-z

J. Arayro, R. Mezher, and H. Sabbah, “Comparative Simulation Study of the Performance of Conventional and Inverted Hybrid Tin-Based Perovskite Solar Cells,” Coatings, 13(7), 1258 (2023). https://doi.org/10.3390/coatings13071258

O. Mostafa, N.A. Zidan, W. Abbas, H.H. Issa, N. Gamal, and M. Fedawy, “Design and performance optimization of lead-free perovskite solar cells with enhanced efficiency,” Mathematical Modelling of Engineering Problems, 10(4), 1307-1316 (2023). https://doi.org/10.18280/mmep.100424

G.W. Kim, D. Shinde, and T. Park, “Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility,” RSC Adv. 5(120), 99356-99360 (2015). http://dx.doi.org/10.1039/C5RA18648J

Md.A. Islam, Md.N.B. Alamgir, S.I. Chowdhury, and S.M.B. Billah, “Lead-free organic inorganic halide perovskite solar cell with over 30% efficiency,” Journal of Ovonic Research, 18, 395-409 (2022). https://doi.org/10.15251/JOR.2022.183.395

H. Sabbah, J. Arayro, and R. Mezher, “Simulation and Investigation of 26% Efficient and Robust Inverted Planar Perovskite Solar Cells Based on GA0.2FA0.78SnI3-1%EDAI2 Films,” Nanomaterials, 12, 3885 (2022). https://doi.org/10.3390/nano12213885

Hui-Jing Du, et al., “Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency,” Chinese Physics B, 25(10), 108802 (2016). https://dx.doi.org/10.1088/1674-1056/25/10/108802

P.K. Patel, “Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell,” Sci. Rep. 11, 3082 (2021). https://doi.org/10.1038/s41598-021-82817-w

V.M. le Corre, M. Stolterfoht, L.P. Toro, M. Feuerstein, et al., “Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How to Optimize Conductivity, Doping, and Thickness,” ACS Appl. Energy Mater. 2, 6280−6287 (2019). https://doi.org/10.1021/acsaem.9b00856

J. Avila, L. Gil-Escrig, P. Boix, M. Sessolo, S. Albrecht, and H.J. Bolink, “Influence of doped charge transport layers on efficient perovskite solar cells,” Sustainable Energy Fuels, 2(11), 2429-2434 (2018). http://dx.doi.org/10.1039/C8SE00218E

F. Peña-Camargo, J. Thiesbrummel, H. Hempel, A. Musiienko, et al., “Revealing the doping density in perovskite solar cells and its impact on device performance,” Appl. Phys. Rev. 9(2), 021409 (2022). https://doi.org/10.1063/5.0085286

M. Ahamad, and A.K.M. Hossain, “Design and optimization of non-toxic and highly efficient tin-based organic perovskite solar cells by device simulation,” Heliyon, 9(9), e19389 (2023). https://doi.org/10.1016/j.heliyon.2023.e19389

Y. Wan-Jian, S. Tingting, and Y. Yanfa, “Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber,” Appl. Phys. Lett. 104(6), 063903 (2014). https://doi.org/10.1063/1.4864778

S.H. Huang, Z. Rui, D. Chi, and D. Bao, “Influence of defect states on the performances of planar tin halide perovskite solar cells,” J. Semicond. 40(3), 032201 (2019). http://doi.org/10.1088/1674-4926/40/3/032201

H.K. Ibrahim, A.M.A. Sabaawi, and Q.T. Aljwari, “A Comprehensive Study on the Effect of Defects on Perovskite Solar Cell Performance,” Preprints, 1, 344 (2023). https://doi.org/10.20944/preprints202306.0344.v1

S.R. Hosseini, M. Bahramgour, P.Y. Sefidi, et al., “Investigating the effect of non-ideal conditions on the performance of a planar,” Heliyon, 8(11), e11471 (2022). https://doi.org/10.1016/j.heliyon.2022.e11471

R. Ranjan, N. Anand, M.N. Tripathi, et al., “SCAPS study on the effect of various hole transport layer on highly efficient 31.86% eco-friendly CZTS based solar cell,” Sci. Rep. 13, 18411 (2023). https://doi.org/10.1038/s41598-023-44845-6

F. Behrouznejad, S. Shahbazi, N. Taghavinia, et al., “A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells,” J. Mater. Chem. A, 4(35), 13488–13498 (2016). https://doi.org/10.1039/C6TA05938D

H. Sharma, and R. Srivastava, “Solution-processed pristine metal oxides as electron-transporting materials for perovskite solar cells,” Front. Electron. Mater. 3, 1174159 (2023). https://doi.org/10.3389/femat.2023.1174159

Опубліковано
2024-09-02
Цитовано
Як цитувати
Кануні, Л., Саїді, Л., Юсфі, А., & Сайдані, О. (2024). Підвищення продуктивності сонячних перовскітних елементів FASnI3 шляхом чисельного моделювання та оптимізації . Східно-європейський фізичний журнал, (3), 404-415. https://doi.org/10.26565/2312-4334-2024-3-49

Найбільш популярні статті цього автора (авторів)