Взаємодія фібрилярних білків з ліпідами: дослідження методом молекулярного докінгу
Анотація
Агрегація неправильно згорнутих білків з утворенням специфічних впорядкованих агрегатів, амілоїд них фібрил, пов’язаних з більш ніж 40 захворювань людини, наразі привертає велику увагу дослідників у біомедичному та нанотехнологічному аспектах. Згідно з сучасними уявленнями, ці агрегати та їх олігомерні інтермедіати здійснюють їх токсичний вплив переважно на рівні клітинних мембран. Окрім цього, мембранні ліпіди були виявлені в багатьох амілоїдних депозитах in vivo, що є свідченням здатності ліпідних молекул вбудовуватись в структуру фібрил та впливати на їх морфологію і механічні властивості. Однак, біологічна роль та структурні передумови фібрил-ліпідних взаємодій залишаються нез’ясованими. У даній роботі методом молекулярного докінгу було проведено дослідження взаємодії між амілоїдними фібрилами та ліпідами в модельних системах, що містили фібрилярні форми лізоциму, інсуліну, Aβ (1-42) пептиду та N-термінального (1-83) фрагменту аполіпопротеїну A-I у якості білкового компоненту, та холестерин, кардіоліпін і фосфатидилхолін у якості ліпідного компоненту. З використанням web-серверу PatchDock та програмного пакету BIOVIA Discovery Studio були охарактеризовані структурні особливості фібрил-ліпідних асоціатів. Показано, що ван-дер-ваальсові та алкіл/π-алкіл взаємодії домінують у стабілізації всіх типів фібрил-ліпідних комплексів. Аналіз найбільш енергетично вигідних структур, отриманих методом докінгу, свідчить про переважно поверхневу локалізацію ліпідів та часткове проникнення ацильних ланцюгів кардіоліпіну та фосфатидилхоліну у фібрилярні груви.
Завантаження
Посилання
M.G. Iadanza, M.P. Jackson, E.W. Hewitt, N.A. Ranson, and S.E. Radford, Nat. Rev. Mol. Cell. Biol. 19, 755 (2018). https://doi.org/10.1038/s41580-018-0060-8
T. Knowles, M. Vendruscolo, and C. Dobson, Nat. Rev. Mol. Cell. Biol. 15, 384 (2014). https://doi.org/10.1038/nrm3810
D.C. Bode, M. Freeley, J. Nield, M. Palma, and J.H. Viles, J. Biol. Chem. 294, 7566 (2019). https://doi.org/10.1074/jbc.AC118.007195
K. Sasahara, K. Morigaki, and K. Shinya, Phys. Chem. Chem. Phys. 15, 8929 (2013). https://doi.org/10.1039/C3CP44517H
N.P. Reynolds, A. Soragni, M. Rabe, D. Verdes, E. Liverani, S. Handschin, R. Riek, and S. Seeger, J. Am. Chem. Soc. 133, 19366 (2011). https://doi.org/10.1021/ja2029848
M.F. Engel, L. Khemtémourian, C.C. Kleijer, H.J. Meeldijk, J. Jacobs, A.J. Verkleij, B. de Kruijff, A. Killian, and J.W. Höppener, Proc. Natl. Acad. Sci. U.S.A. 105, 6033−6038 (2008). https://doi.org/10.1073/pnas.0708354105
E. Sparr, M.F. Engel, D.V. Sakharov, M. Sprong, J. Jacobs, B. de Kruijff, and J.W. Höppener, A. Killian, J. FEBS Lett. 577, 117 (2004). https://doi.org/10.1016/j.febslet.2004.09.075
N. Arispe, E. Rojas, and H.B. Pollard, Proc. Natl. Acad. Sci. U.S.A. 90, 567 (1993). https://doi.org/10.1073/pnas.90.2.56
N. Arispe, H.B. Pollard, E. Rojas, Mol. Cell. Biochem. 140, 119 (1994). https://doi.org/10.1007/BF00926750
N. Arispe, H.B. Pollard, E. Rojas, Proc. Natl. Acad. Sci. U.S.A. 90, 10573 (1993). https://doi.org/10.1073/pnas.90.22.10573
J.M. Sanderson, J. Biol. Chem. 298, 102108 (2022). https://doi.org/10.1016/j.jbc.2022.102108
G.P. Gellermann, T.R. Appel, A. Tannert, A. Radestock, P. Hortschansky, V. Schroeckh et al. Proc. Natl Acad. Sci. U.S.A. 102, 6297 (2005). https://doi.org/10.1073/pnas.0407035102
G.P. Gellermann, T.R. Appel, P. Davies, S. Diekmann, Biol. Chem. 387, 1267 (2006). https://doi.org/10.1515/BC.2006.157
J. M. Sanderson, Far from inert: membrane lipids possess intrinsic reactivity that has consequences for cell biology. BioEssays, 42, el900147 (2020). https://doi.org/10.1002/bies.201900147
M. Babych, P.T. Nguyen, M. Cöte-Cyr, N. Kihal, N. Quittot, and M. Golizeh et al. Biochemistry, 60, 2285 (2021). https://doi.org/10.1021/acs.biochem.1c00308
A.E. Saghir, G. Farrugia, N. Vassailo, Chem. Phys. Lipids 234, 105010 (2021). https://doi.org/10.1016/j.chemphyslip.2020.105010
J.R. Brender, U.H. Durr, D. Heyl, M.B. Budarapu, and A. Ramamoorthy, Biochim. Biophys. Acta, 1768, 2026 (2007). https://doi.org/10.1016/j.bbamem.2007.07.001
M. Grey, S. Linse, H. Nilsson, P. Brundin, E. Sparr, J. Parkinson's Dis. 1, 359 (2011). https://doi.org/10.3233/JPD-2011-11067
E. Hellstrand, A. Nowacka, D. Topgaard, S. Linse, and E. Sparr, PLoS One 8, e77235 (2013). https://doi.org/10.1371/journal.pone.0077235
C. Zhang, G. Vasmatzis, J.L. Cornette, and C. De Lisi, J. Mol. Biol. 267, 707 (1997). https://doi.org/10.1006/jmbi.1996.0859
D. Schneidman-Duhovny, Y. Inbar, R. Nussimov, and H. Wolfson, Nucl. Acid Res. 33, W363 (2005). https://doi.org/10.1093/nar/gki481
Авторське право (c) 2023 Валерія Трусова, Уляна Тарабара, Ольга Житняківська, Катерина Вус, Галина Горбенко
Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).