Simultaneous Docking of Antiviral Drugs and Cyanine Dyes with Proteins Using Multiple Ligand Approach

  • Olga Zhytniakivska Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-2068-5823
  • Uliana Tarabara Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7677-0779
  • Kateryna Vus Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0003-4738-4016
  • Valeriya Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7087-071X
  • Galyna Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Keywords: Protein-drug-dye complexes, Antiviral agents, Protein nanoparticles, Drug nanocarriers, Cyanine dyes, Multiple molecular docking

Abstract

The protein-based nanosystems for targeted drug delivery of a wide array of substances, ranging from small drugs and therapeutic proteins to nucleic acids and genes, attract increasing attention due to their biocompatibility and biodegradability, extraordinary binding capacity for different ligands, accessibility from natural sources, effective drug protection and gentle encapsulation conditions. Due to the multitude of binding pockets and functional groups on the protein surface, these nanocarriers seem to be highly efficient multifunctional nanotheranostic systems that could incorporate both a therapeutic drug and a visualizing agent. This integration serves multiple purposes, including the regulation of drug release, monitoring the alterations at the target site in response to treatment, and offering crucial insights into the efficacy of the intervention in its early stages. The development of these advanced nanosystems necessitates a thorough comprehension of the potential interactions within these intricate systems. In the present study we assessed the potential of six trimethine and seven pentamethine cyanine dyes to serve as visualizing agents in the drug-protein-dye systems which include functionally significant proteins (cytochrome c, serum albumin, lysozyme and insulin and four antiviral drugs, viz. favipiravir, molnupiravir, nirmatrelvir and ritonavir. The ternary systems with the highest dye-protein surface shape complementarity were established for all groups of the examined cyanine dyes. The influence of the cyanine dye structure on the stability of the drug-protein-dye complexes was assessed. The obtained results indicate that the dye-protein affinity is not solely dependent on the length of the polymethine chain. It was found that the most prospective drug delivery systems containing the trimethines and pentamethines as visualizing agents are AK5-6-, AK5-8- and AK3-11-drug-albumin complexes.

Downloads

Download data is not yet available.

References

Md. I. Khan, M.I. Hossain, M.K. Hossain, M.H.K. Rubel, K.M. Hossain, et al., ACS. Appl. Bio Mater. 5, 971 (2022). https://doi.org/10.1021/acsabm.2c00002

J. Wang, Y. Li, and G. Nie, Nat. Rev. Mat. 6, 766 (2021). https://doi.org/10.1038/s41578-021-00315-x

X. Sun, J. Wang, Z. Wang, C. Zhu, J. Xi, L. Fan, J. Han, and R. Guo, J. Colloid Interface Sci. 610, 89 (2022). https://doi.org/10.1016/j.jcis.2021.11.189

E. Nance, S.H. Pun, R. Saigal, and D.L. Sellers, 7, 31 (2022). https://doi.org/10.1038/s41578-021-00394-w

T.P. Crowe, and W.H. Hsu, Pharmaceutics, 14, 629 (2022). https://doi.org/10.3390/pharmaceutics14030629

A.S. Ali, M.G. Alrashedi, O.A.A. Ahmed, I.M. Ibrahim, Polymers, 14, 2616 (2022). https://doi.org/10.3390/polym14132616

N.B. Kiremitler, M.Z. Kemerli, and N. KAyaci, et al., ACS Appl. Nano Mater. 5, 6029 (2022). https://doi.org/10.1021/acsanm.2c00181

C. Medina-Montano, I. R. Berti, R. C. Gambaro, M.J. Limeres, M. Svensson, et al., Pharmaceutics, 14, 1611 (2022). https://doi.org/10.3390/pharmaceutics14081611

M. Ferreira, L.L. Chaves, S.A. Costa Lima, S. Reis, Int. J. Pharm. 492, 65 (2015). https://doi.org/10.1016/j.ijpharm.2015.07.013

Y. Deng, X. Zhang, H. Shen, Q. He, Z. Wu, W. Liao, and M. Yuan, Front. Bioeng. Biotechnol. 7, (2019). https://doi.org/10.3389/fbioe.2019.00489

T. Alam, M.A. Ansari, S. Baboota, and J. Ali, Drug Deliv. Transl. Res. 12, 577 (2022). https://doi.org/10.1007/s13346-021-00958-x

H. Zhang, T. Fan, W. Chen, Y. Li, and B. Wang, Bioactive Materials. 5, 1071 (2020). https://doi.org/10.1016/j.bioactmat.2020.06.012

A.L. Martínez-López, C. Pangua, C. Reboredo, R. Campión, J. Morales-Gracia, and J.M. Irache, Int. J. Pharm. 581, 119289 (2020). https://doi.org/10.1016/j.ijpharm.2020.119289

A.O. Elzoghby, W.M. Samy, and N.A. Elgindy, Journal of Controlled Release, 161, 38 (2012). https://doi.org/10.1016/j.jconrel.2012.04.036

E. Kianfar, J. Nanobiotechnol. 19, 159 (2021). https://doi.org/10.1186/s12951-021-00896-3

C. Wen, J. Zhang, H. Zhang, Y. Duan, Foods. 11, 1701 (2022). https://doi.org/10.3390/foods11121701

S. Lee, T.C. Pham, C. Bae, Y. Choi, Y.K. Kim, and J. Yoon, Coord. Chem. Rev. 412, 213258 (2020). https://doi.org/10.1016/j.ccr.2020.213258

L. Xu, S.-B. Wang, C. Xu, D. Han, X.-H. Ren, X.-Z. Zhang, and S.-X. Cheng, ACS Appl. Mater. Interfaces. 11, 38385 (2019). https://doi.org/10.1021/acsami.9b11263

Y. Wang, H. Igbal, U. U.-Rehman, L. Zhai, Z. Yuan, A. Razzaq, M. Lv, et al., J. Drug Deliv. Sci. Technol. 79, 104072 (2023). https://doi.org/10.1016/j.jddst.2022.104072

O. Zhytniakivska, U.K. Vus, V. Trusova, and G. Gorbenko, East. European Journal of Physics, 3, 585 (2023). https://doi.org/10.26565/2312-4334-2023-3-69

E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng, and T. Ferrin, UCSF Chimera – a visualization system for exploratory research and analysis, J. Comput. Chem. 25, 1605–1612(2004). https://doi.org/10.1002/jcc.20084

P. Csizmadia, in: Proceedings of ECSOC-3, the third international electronic conference on synthetic organic chemistry, (1999), pp. 367-369. https://doi.org/10.3390/ECSOC-3-01775

M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17

D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, and H.J. Wolfson, Nucl. Acids. Res. 33, W363 (2005). https://doi.org/10.1093/nar/gki481

M.F. Adasme, K.L. Linnemann, S.N. Bolz, F. Kaiser, S. Salentin, V.J. Haupt, and M. Schroeder, Nucl. Acids. Res. 49, W530 (2021). https://doi.org/10.1093/nar/gkab294

E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin, J. Comput. Chem. 25, 1605 (2004). https://doi.org/10.1002/jcc.20084

Published
2023-12-02
Cited
How to Cite
Zhytniakivska, O., Tarabara, U., Vus, K., Trusova, V., & Gorbenko, G. (2023). Simultaneous Docking of Antiviral Drugs and Cyanine Dyes with Proteins Using Multiple Ligand Approach. East European Journal of Physics, (4), 318-325. https://doi.org/10.26565/2312-4334-2023-4-42

Most read articles by the same author(s)

1 2 > >>