Molecular Docking of Monomethine Cyanine Dyes to Lysozyme Amyloid Fibrils
Abstract
Protein aggregation into highly ordered supramolecular aggregates is the hallmark of many degenerative diseases including the neurological disorders (Parkinson’s, Alzheimer’s, and Huntington’s diseases), type II diabetes, systemic amyloidosis, spongiform encephalopathies, etc. One of the simplest and effective methods for the identification and characterization of amyloid fibrils in vitro and the visualization of amyloid inclusions in vivo is based on the use of probes sensitive to the beta-pleated motifs. In the attempt to design new amyloid-sensing dyes or to optimization the existing molecules, it is crucial to have the sufficient knowledge of the molecular and atomic levels interactions in the binding sites. Among the especially useful methods available to provide the atomic-level insights into the mechanisms of various types of biomolecular interactions is molecular docking technique. In the present study, the molecular docking tool has been employed to investigate the interactions between the monomethine cyanine dyes and the lysozyme amyloid fibrils constructed from the K-peptide of lysozyme, GILQINSRW (residues 54–62 of the wild-type protein). Using the AutoDOCK and the protein-ligand interaction profiler PLIP it was found: i) monomethines interact with the fibril surface (with the aromatic residues on the top of β-sheet or with the edges of the β-sheet); ii) the dye binding is governed by the hydrophobic interactions, salt bridges and the hydrogen bonds between the aliphatic substituents on the nitrogen atom of benzothiazole part of dye molecules and the lysozyme amyloid fibril; iii) the variations in the cyanine structure and in the lysozyme amiloid twisting didn’t insert significant effect on the binding mode of cyanines.
Downloads
References
J. Fan, A. Fu, and L. Zhang, Quant. Biol. 7(2), 83-89 (2019). https://doi.org/10.1007/s40484-019-0172-y
T. Lengauer, and M. Rarey, Cur. Opin. Struct. Biol. 6, 402-406 (1996). https://doi.org/10.1016/S0959-440X(96)80061-3
N.S. Pagadala, K. Syed, and J. Tuszynski, Biophys Rev. 9, 91-102 (2017), https://doi.org/10.1007/s12551-016-0247-1
P.H.M. Torres, A.S.R. Sodero, P. Jofily, F.P. Silva-Jr, Int. J. Mol. Sci. 20, 4574 (2019). https://doi.org/10.3390/ijms20184574
L.G. Ferreira, R.N. Dos Santos, G. Oliva, and A.D. Andricopulo, Molecules, 20(7), 13384-13421 (2015). https://doi.org/10.3390/molecules200713384
W. Yu, and A.D. MacKerell Jr. Antibiotics, 1520, 85-106 (2016). https://doi.org /10.1007/978-1-4939-6634-9_5
J. Ritu, D. Mehak, K. Alka, and C. Anil K., Cur. Bioinform. 15, 270-278 (2020). https://doi.org/10.2174/1574893615666191219094216
J.A. Pradeepkiran, and P.H. Reddy, Cells, 8, 260 (2019). https://doi.org/10.3390/cells8030260
R. Yu, L. Chen, R. Lan, R. Shen, and P. Li, Int. J. Antimicrob. Agents, 56, 106012 (2020). https://doi.org/10.1016/j.ijantimicag.2020.106012
S. Das, S. Sarmah, S. Lyndem, and A.S. Roy, J. Biomol. Struct. Dyn. 39, 3347-3357 (2021). https://doi.org/10.1080/07391102.2020.1763201
D.R. Langley, A. W. Walsh, C. J. Baldick, et al, J, Virol. 81, 3992-4001 (2007). https://doi.org/10.1128/JVI.02395-06
W.-G. Gu, X. Zhang, and J.-F. Yuan. The AAPS J. 16, 674-680 (2014). https://doi.org/10.1208/s12248-014-9604-9
I. Ali, M.N. Lone, and H.Y. Alboul-Enein. Med Chem Comm. 9, 1742-1773 (2017). https://doi.org/10.1039/C7MD00067G
T. Al-Warhi, A. Sabt, E.B. Elkaeed, and W.M. Eldehna. Bioorg. Chem. https://doi.org/10.1016/j.bioorg.2020.104163
A. Fisher, B.G. Freedman, D.R. Bevan, and R.S. Senger. Comput. Struct. Biotechnol. J. 11, 91-99 (2014). https://doi.org/10.1016/j.csbj.2014.08.010
H.Liu, M. Tu, S. Cheng, H. Chen, Z. Wang, and M. Du. Food Funct. 10, 886-896 (2019). https://doi.org/10.1039/C8FO02235F
A. Chakraborty, A.K. Panda, R. Ghosh, and A. Biswas, Arch. Biochem. Biophys. 665, 107-113 (2019). https://doi.org/10.1016/j.abb.2019.03.001
A. Mukherjee, and B. Singh, J. Luminesc. 190, 319-327 (2017). https://doi.org/10.1016/j.jlumin.2017.05.068
T. Pantsar, and A. Poso, Molecules. 23, 1899 (2018). https://doi.org/10.3390/molecules23081899
R. Wang, L. Lai, and S. Wang, J. Comput. Aided Mol 16, 11-26 (2002). https://doi.org/10.1023/A:1016357811882
S. Ghasemzadeh, and G.H. Riazi, Int. J. Biol. Macromol. 154, 1505-1516 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.032
Z. Chen, G. Krause, and B. Reif, J. Mol. Biol. 354, 760-776 (2005). https://doi.org/10.1016/j.jmb.2005.09.055
N.H. Mudliar, and P.K. Singh, Chem. Commun. 55, 3907-3910 (2019). https://doi.org/10.1039/C9CC01262A
A.K. Mora, P.K. Singh, B.S. Patro, and S. Nath, Chem. Commun. 52, 12163-12166 (2016). https://doi.org/10.1039/C6CC05600H
O. Zhytniakivska, A. Kurutos, U. Tarabara, et al. J. Mol. Liq. 311, 113287 (2020). https://doi.org/10.1016/j.molliq.2020.113287
G.Q. Gao, and A.W. Xu, RSC Adv. 3, 21092-21098 (2013). https://doi.org/10.1039/C3RA43259A
R. Sabate, and J. Estelrich, Biopolymers, 72, 455-463 (2003). https://doi.org/10.1002/bip.10485
H.L. Yang, S.Q. Fang, Y.W. Tang, et al. Eur. J. Med. Chem. 179, 736-743 (2019). https://doi.org/10.1016/j.ejmech.2019.07.005
X. Wang, H.N. Chan, N. Desbois, C.P. Gros, et al. ACS. Appl. Mater. Interfaces, 13, 18525-18532 (2021). https://doi.org/10.1021/acsami.1c01585
T. Smidlehner, H. Bonnet, S. Chierici, and I. Piantanida, Bioorg. Chem. 104196 (2020). https://doi.org/10.1016/j.bioorg.2020.104196
K. Vus, M. Girych, V. Trusova, et al. J Mol Liq, 276, 541-552 (2019). https://doi.org/10.1016/j.molliq.2018.11.149
V. Kovalska, M. Losytskyy, V. Chernii, K. Volkova, et al. Bioorg. Med. Chem. 20, 330-334. (2012). https://doi.org/10.1016/j.bmc.2011.10.083
S. Chernii, Y. Gerasymchuk, M. Losytskyy, et al. PLOS ONE, 16, e0243904. (2021). https://doi.org/10.1371/journal.pone.0243904
V. Trusova, East Eur. J. Phys. 2, 51-58 (2015). https://doi.org/10.26565/2312-4334-2015-2-06
D. Schneidman-Duhovny, Y. Inbar, R. Nussimov, and H. Wolfson, Nucl. Acids Res. 33, W363-W367 (2006). https://doi.org/10.1093/nar/gki481
N. Andrusier, R. Nussimov, and H. Wolfson. Proteins, 69, 139-159 (2007). https://doi.org/10.1002/prot.21495
M.R. Smaoui, F. Poitevin, M. Delarue, et al. Biophys J. 104, 139-159 (2007). https://doi.org/10.1016/j.bpj.2012.12.037
S. Dallakyan, and A.J. Olson, Methods Mol. Biol. 1263, 243-250 (2015). https://doi.org/10.1007/978-1-4939-2269-7_19
P. Csizmadia, In: Proceedings Of ECSOC-3, The Third International Electronic Conference on Synthetic Organic Chemistry, 367-369 (1999). https://doi.org/10.3390/ECSOC-3-01775
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin. J. Comput. Chem. 25, 1605-1612 (2004). https://doi.org/10.1002/jcc.20084
S. Salentin, S. Schreiber, V. Joachim Haupt, M.F. Adasme, and M. Schroeder, Nucleic Acids Res. 43 W443-W447 (2015). https://doi.org/10.1093/nar/gkv315
M. Biancalana, and S. Kode, Biochem. Biophys. Acta, 1804, 1405-1412 (2010). https://doi.org/10.1016/j.bbapap.2010.04.001
E.F. Marondedze, K.K. Govender, and P.P. Govender, Biophys Chem. 256, 106281 (2020). https://doi.org/10.1016/j.bpc.2019.106281
M. Sunde, L. Serpell, M. Bartlam, et al. J. Mol. Biol. 273, 729-739 (1997). https://doi.org/10.1006/jmbi.1997.1348
O. Zhytniakivska, A. Kurutos, M. Shchuka, et al. Chem Phys Lett, 785, 139127 (2021). https://doi.org/10.1039/D1CP01359A
A. Sulatskaya, N. Rodina, M. Sulatsky, et al. Int. J. Mol. Sci. 19, 2486 (2018). https://doi.org/10.3390/ijms19092486
Copyright (c) 2022 Olga Zhytniakivska, Uliana Tarabara, Atanas Kurutos, Kateryna Vus, Valeriya Trusova, Galyna Gorbenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).