Molecular Dynamics Study of Insulin Mutants
Abstract
Human insulin, a small protein hormone consisting of A-chain (21 residues) and B-chain (30 residues) linked by three disulfide bonds, is crucial for controlling the hyperglycemia in type I diabetes. In the present work molecular dynamics simulation (MD) with human insulin and its mutants was used to assess the influence of 10 point mutations (HisA8, ValA10, AspB10, GlnB17, AlaB17, GlnB18, AspB25, ThrB26, GluB27, AspB28), 6 double mutations (GluA13+GluB10, SerA13+GluB27, GluB1+GluB27, SerB2+AspB10, AspB9+GluB27, GluB16+GluB27) and one triple mutation (GluA15+AspA18+AspB3) in the protein sequence on the structure and dynamics of human insulin. A series of thermal unfolding MD simulations with wild type (WT) human insulin and its mutants was performed at 400 K with GROMACS software (version 5.1) using the CHARMM36m force field. The MD results have been analyzed in terms of the parameters characterizing both the global and local protein structure, such as the backbone root mean-square deviation, gyration radius, solvent accessible surface area, the root mean-square fluctuations and the secondary structure content. The MD simulation data showed that depending on time evolution of integral characteristics, the examined mutants can be tentatively divided into three groups: 1) the mutants HisA8, ValA10, AlaB17, AspB25, ThrB26, GluB27, GluA13+GluB10, GluB1+GluB27 and GluB16+GluB27, which exert stabilizing effect on the protein structure in comparison with wild type insulin; 2) the mutants GlnB17, AspB10, SerB2+AspB10 and GluA15+AspA18+AspB3 that did not significantly affect the dynamical properties of human insulin with a minimal stabilizing impact; 3) the mutants AspB28, AspB9+GluB27 and SerA13+GluB27, GlnB18, destabilizing the protein structure. Analysis of the secondary structure content provided evidence for the influence of AspB28, AspB9+GluB27 and SerA13+GluB27, GlnB18 on the insulin unfolding. Our MD results indicate that the replacement of superficial nonpolar residues in the insulin structure by hydrophilic ones gives rise to the increase in protein stability in comparison with the wild type protein.
Downloads
References
Q. Hua, Protein Cell. 1, 537-551 (2010), https://doi.org/10.1007/s13238-010-0069-z.
F. Hu, Diabetes Care. 34, 1249-1257 (2011), https://doi.org/10.2337/dc11-0442.
M. Atkinson, G. Eisenbarth, and A. Michels, The. Lancet. 383, 69-82 (2014), https://doi.org/10.1016/S0140-6736(13)60591-7.
M. Nakamura, Y. Misumi, T. Nomura, W. Oka, A. Isoguchi, K. Kanenawa, T. Masuda, T. Yamashita, Y. Inoue, Y. Ando, and M. Ueda, Diabetes. 68, 609-616 (2019), https://doi.org/10.2337/db18-0846.
T Nagase, K. Iwaya, K. Kogure, T. Zako, Y. Misumi, M. Kikuchi, K. Matsumoto, M. Noritake, Y. Kawachi, M. Kobayashi, Y. Ando, and Y. Katsura, J. Diabetes Investig. 11, 1002-1005 (2020), https://doi.org/10.1111/jdi.13199.
Z.B. Taraghdari, R. Imani, and F. Mohabatpour, Macromol. Biosci. 19, 1800458 (2019), https://doi.org/10.1002/mabi.201800458.
M. Akbarian, Y. Ghasemi, V. Uversky, and R. Yousefi. Int. J. Pharm. 547, 450-468 (2018), https://doi.org/10.1016/j.ijpharm.2018.06.023.
L. Nielsen, R. Khurana, A. Coats, S. Frokjaer, J. Brange, S. Vyas, V.N. Uversky, and A.L. Fink, Biochemistry. 40, 6036-6046 (2001), https://doi.org/10.1021/bi002555c.
M. Groenning, S. Frokjaer, and B. Vestergaard, Curr. Protein. Pept. Sci. 10, 509-528 (2009), https://doi.org/10.2174/138920309789352038.
F. Librizzi, and C. Rischel, Protein Sci. 14, 3129-3134 (2005), https://doi.org/10.1110/ps.051692305.
A. Podesta, G. Tiana, P. Milani, and M. Manno. Biophys J. 90, 589-597 (2006), https://doi.org/10.1529/biophysj.105.068833.
S. Grudzielanek, R. Jansen, and R. Winter, J. Mol. Biol. 351,879-894 (2005), https://doi.org/10.1016/j.jmb.2005.06.046.
A. Noormägi, K. Valmsen, V Tõugu, and P. Palumaa, Protein J. 34, 398–403 (2015), https://doi.org/10.1007/s10930-015-9634-x.
J. Brange, L. Andersen, E. Laursen, G. Meyn, and E. Rasmussen, J. Pharm. Sci. 86, 517-525 (1997), https://doi.org/10.1021/js960297s.
M. Ziaunys, T. Sneideris, and V. Smirnovas, Phys. Chem. Chem. Phys. 20, 27638-276455 (2018), https://doi.org/10.1039/C8CP04838J.
M. Muzaffar, and A. Ahmad, Plos ONE. 20, e27906 (2011), https://doi.org/10.1371/journal.pone.0027906.
I. Bekard, and D. Dunstan, Biophys J. 97, 2521-2531 (2009), https://doi.org/10.1016/j.bpj.2009.07.064.
M. Sorci, R. Grassucci, I. Hahn, J. Frank, and G. Belfort, Proteins. 77, 62–73 (2009), https://doi.org/10.1002/prot.22417.
C.G. Frankær, P. Sønderby, M.B. Bang, R.V. Mateiu, M. Groenning, J. Bukrinski, and P. Harris, J. Struct. Biol. 199, 27–38 (2017), https://doi.org/10.1016/j.jsb.2017.05.006.
A. Noormagi, J. Gavrilova, J. Smirnova, V. Tõugu, and P. Palumaa, Biochem. J. 430, 511–518 (2010), https://doi.org/10.1042/BJ20100627.
J. Hansen, Biophys. Chem. 39, 107–110 (1991), https://doi.org/10.1016/0301-4622(91)85011-E.
A. Ahmad, V. Uversky, D. Hong, and A. Fink, J. Biol. Chem. 280 42669–42675 (2005), https://doi.org/10.1074/jbc.M504298200.
M. Akbarian, R. Yousefi, A.A. Moosavi-Movahedi, A. Ahmad, and V.N. Uversky, Biophys. J. 117, 1626–1641 (2019), https://doi.org/10.1016/j.bpj.2019.09.022.
D.P. Hong, A. Ahmad, and A.L. Fink, Biochemistry. 45, 9342-9353 (2006), https://doi.org/10.1021/bi0604936.
D.P. Hong, and A.L. Fink, Biochemistry, 44, 16701-16709 (2005), https://doi.org/10.1021/bi051658y.
R. Huang, N. Maiti, N. Philips, P.R. Carey, and M.A. Weiss, Biochemistry. 45, 10278-10293 (2006), https://doi.org/10.1021/bi060879g.
M.I. Ivanova, S.A. Sievers, M.R. Sawaya, J.S. Wall, and D. Eisenberg, PNAS, 106, 18990-18995 (2009), https://doi.org/10.1073/pnas.0910080106.
X.Q. Hua, and M.A. Weiss, J. Biol. Chem. 279, 21449-21460 (2004), https://doi.org/10.1074/jbc.M314141200.
M. Bouchard, J. Zurdo, E.J. Nettleton, C.M. Dobson, and C.V. Robinson, Protein. Sci. 9, 1960–1967 (2008), https://doi.org/10.1110/ps.9.10.1960.
V. Babenko, and W. Dzwolak, FEBS Lett. 587, 625–630 (2013), https://doi.org/10.1016/j.febslet.2013.02.010.
L. Nielsen, S. Frokjaer, J. Brange, V.N. Uversky, and A.L. Fink, Biochemistry, 40, 8397–8409 (2001), https://doi.org/10.1021/bi0105983.
S.A. Lieblich, K.Y. Fang, J.K.B. Cahn, J. Rawson, J. LeBon, H.T. Ku, and D.A. Tirrell, J. Am. Chem. Soc. 139, 8384–8387 (2017), https://doi.org/10.1021/jacs.7b00794.
J. Huang, and A. MacKerell, J. Comput. Chem. 34, 2135–2145 (2013), https://doi.org/10.1002/jcc.23354.
S. Jo, J. Lim, J. Klauda, and W. Im, Biophys. J. 97, 50-58 (2009), https://doi.org/10.1016/j.bpj.2009.04.013.
T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089–10092 (1993), https://doi.org/10.1063/1.464397.
W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33–38 (1996), https://doi.org/10.1016/0263-7855(96)00018-5.
T.S. Choi, J.W. Lee, K.S. Jin, and H.I. Kim, Biophys. J. 107, 1939-1949 (2014), https://doi.org/10.1016/j.bpj.2009.04.013.
Copyright (c) 2021 Olga Zhytniakivska, Uliana Tarabara, Valeriya Trusova, Kateryna Vus, Galyna Gorbenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).