Флуоресцентне дослідження взаємодії між амілоїдними фібрилами інсуліну та білками

  • Уляна Тарабара Кафедра медичної фізики та біомедичних нанотехнологій, Харківський національний університет імені В.Н. Каразіна, Харків, Україна https://orcid.org/0000-0002-7677-0779
  • Ольга Житняківська Кафедра медичної фізики та біомедичних нанотехнологій, Харківський національний університет імені В.Н. Каразіна, Харків, Україна https://orcid.org/0000-0002-2068-5823
  • Катерина Вус Кафедра медичної фізики та біомедичних нанотехнологій, Харківський національний університет імені В.Н. Каразіна, Харків, Україна https://orcid.org/0000-0003-4738-4016
  • Валерія Трусова Кафедра медичної фізики та біомедичних нанотехнологій, Харківський національний університет імені В.Н. Каразіна, Харків, Україна https://orcid.org/0000-0002-7087-071X
  • Галина Горбенко Кафедра медичної фізики та біомедичних нанотехнологій, Харківський національний університет імені В.Н. Каразіна, Харків, Україна https://orcid.org/0000-0002-0954-5053
Ключові слова: фосфонієвий зонд, амілоїдні фібрили інсуліну, комплекс фібрила-білок

Анотація

Самоорганізація білків та пептидів в амілоїдні фібрили є предметом інтенсивних досліджень, оскільки встановлено зв’язок цього процесу з численними захворюваннями людини. Незважаючи на значний прогрес у розумінні цитотоксичності амілоїдів, роль клітинних компонентів, зокрема білків, у цитотоксичній дії амілоїдних агрегатів досі повністю не з’ясована. Дана робота спрямована на вивчення взаємодії між амілоїдними фібрилами інсуліну та деякими білками, які відрізняються за своєю структурою та фізико-хімічними властивостями. З цією метою, було досліджено флуоресцентні спектральні властивості амілоїд-чутливого фосфонієвого барвника TDV у фібрилах інсуліну (InsF) та їх сумішах із нативним сироватковим альбуміном (SA), лізоцимом (Lz) та інсуліном (Ins ), частково розгорнутими при низькому рН. Виявилось, що зв’язування TDV з амілоїдними фібрилами інсуліну супроводжується значним зростанням інтенсивності флуоресценції. У системі (InsF + TDV) спектри флуоресценції зонду можна розкласти на три спектральні компоненти з максимумами на довжинах хвиль~ 572 нм, 608 нм і 649 нм. Додавання SA, Lz або Ins до суміші (InsF + TDV) призводило до зміни інтенсивності флуоресценції, положення максимуму флуоресценції та відносного внеску першої та третьої спектральних компонентів у загальний спектр. Для отримання додаткової інформації щодо взаємодії між амілоїдними фібрилами інсуліну та білками досліджено Фьорстерівський резонансний перенос енергії між TDV у якості донора, і сквараїнового барвника SQ1 як акцептора. Встановлено, що SA не змінює ефективність переносу енергії порівняно з контрольною системою (InsF + хромофори), тоді як додавання Lz та Ins призвело до зниження ефективності. Зміни флуоресцентного відгуку TDV в системах білок-фібрили можна пояснити перерозподілом молекул зонду між сайтами зв’язування, розташованими на InsF, нефібрилізованих Ins, SA або Lz та інтерфейсі білок-білок.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

R. Gallardo, N.A Ranson, S.E Radford, Curr. Opin. Struct. Biol. 60, 7-16 (2020). https://doi.org/10.1016/j.sbi.2019.09.001.

V. Martorana, S. Raccosta, D. Giacomazza, L. A. Ditta, R. Noto, P. L. S. Biagio, M. Manno, Biophys. Chem. 253, 106231 (2019). https://doi.org/10.1016/j.bpc.2019.106231.

C.M. Dobson, Cold Spring Harb. Perspect. Biol. 9, a023648 (2017). https://doi.org/10.1101/cshperspect.a023648.

P. C. Ke, R. Zhou, L. C. Serpell, R. Riek, T. P. J. Knowles, H. A. Lashuel, E. Gazit, I. W. Hamley, T. P. Davis, M. Fӓndrich, D. E. Otzen, M. R. Chapman, C. M. Dobson, D. S. Eisenberg, R. Mezzenga, Chem. Soc. Rev. 49, 5473 5509 (2020). https://doi.org/10.1039/C9CS00199A.

O.S. Makin, L.C. Serpell, FEBS J. 272, 5950-5961 (2005). https://doi.org/10.1111/j.1742-4658.2005.05025.x.

R. Nelson, D. Eisenberg, Curr. Opin. Struct. Biol. 16, 260-265 (2006). https://doi.org/10.1016/j.sbi.2006.03.007.

Z. Wang, S. Kang, S. Cao, M. Krecker, V. Tsukruk, S. Singamaneni, MRS Bulletin 45, 1017-1026 (2020). https://doi.org/10.1557/mrs.2020.302.

T.P.J. Knowles, R. Mezzenga, Adv. Mater. 28, 6546-6561 (2016). https://doi.org/10.1002/adma.201505961.

M. Stefani, Biochim. Biophys. Acta, 1739, 5-25 (2004). https://doi.org/10.1016/j.bbadis.2004.08.004.

F. Chiti, C. M. Dobson, Annu. Rev. Biochem., 75, 333-366 (2006). https://doi.org/10.1146/annurev.biochem.75.101304.123901.

M. Bucciantini, S. Rigacci and M. Stefani, J. Phys. Chem. Lett., 5, 517-527 (2014). https://doi.org/10.1021/jz4024354.

S. M. Butterfield and H. A. Lashuel, Angew. Chem., Int. Ed.,2010, 49, 5628-5654. https://doi.org/10.1002/anie.200906670.

A. A. Meratan, A. Ghasemi and M. Nemat-Gorgani, J. Mol.Biol., 409, 826-838 (2011). https://doi.org/10.1016/j.jmb.2011.04.045.

B. Huang, J. He, J. Ren, X. Y. Yan and C. M. Zeng, Biochemistry, 48, 5794-5800 (2009). https://doi.org/10.1021/bi900219c.

B. Caughey, P. T. Lansbury, Annu. Rev. Neurosci., 6, 267-298 (2003). https://doi.org/10.1146/annurev.neuro.26.010302.081142.

E. Sparr, M. F. M. Engel, D. V. Sakharov, M. Sprong, J. Jacobs, B. de Kruijf, J. W. M. Hoppener, J. A. Killian, FEBS Lett., 577, 117-120 (2004). https://doi.org/10.1016/j.febslet.2004.09.075.

M. F. Engel, L. Khemtemourian, C. C. Kleijer, H. J. Meeldijk,J. Jacobs, A. J. Verkleij, B. de Kruijff, J. A. Killian and J. W. Ho ¨ppener, Proc. Natl. Acad. Sci. U. S. A., 105,6033-6038 (2008). https://doi.org/10.1073/pnas.0708354105.

A. L. Gharibyan, V. Zamotin, K. Yanamandra, O. S.Moskaleva, B. A. Margulis, I. A. Kostanyan and L. A.Morozova-Roche, J. Mol. Biol., 365, 1337-1349 (2007). https://doi.org/10.1016/j.jmb.2006.10.101.

J.F. Brandts, L.J. Kaplan, Biochemistry 12, 2011-2024 (1973). https://doi.org/10.1021/bi00734a027.

M. Groenning, J. Chem. Biol. 3, 1-18 (2010). https://doi.org/10.1007/s12154-009-0027-5.

V.M. Ioffe, G.P. Gorbenko, T. Deligeorgiev, N. Gadjev, A. Vasilev, Biophys. Chem. 128, 75–86 (2007). https://doi.org/10.1016/j.bpc.2007.03.007.

M. Bacalum, B. Zorila, M. Radu, Anal. Biochem. 440, 123–129 (2013). https://doi.org/10.1016/j.ab.2013.05.031.

J.R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed., (Springer, New York, 2006).

G. Gorbenko, O. Zhytniakivska, K. Vus, U. Tarabara, V. Trusova, Phys. Chem. Chem. Phys. 23, 14746-14754 (2021), https://doi.org/10.1039/D1CP01359A.

I. M. Kuznetsova, A.I. Sulatskaya, V. N. Uversky, K. K. Turoverov, Mol. Neurobiol. 45, 488-498 (2012). https://doi.org/10.1007/s12035-012-8272-y.

H. Xie, C. Guo, Front. Mol. Biosci. 7, 629520 (2021). https://doi.org/10.3389/fmolb.2020.629520.

K. Siposova, M. Kubovcikova, Z. Bednarikova, M. Koneracka, V. Zavisova, A. Antosova, P. Kopcansky, Z. Daxnerova, Z. Gazova, Nanotechology, 23, 055101 (2012). https://doi.org/10.1088/0957-4484/23/5/055101.

U. Bohme, U. Scheder, Chem. Phys. Lett., 434, 342–345 (2007). https://doi.org/10.1016/j.cplett.2006.12.068.

G. Sudlow, D. J. Birkett, D.N. Wade, Mol. Pharmacol., 12, 1052–1061 (1976).

A. Samanta, S. Jana, D. Ray, N. Guchhait, Spectrochim. Acta. A, 121, 23-34 (2014). https://doi.org/10.1016/j.saa.2013.10.049.

V. S. Jisha, K. T. Arun, M. Hariharan, D. Ramaiah, J. Phys. Chem. B, 114, 5912-5919 (2010). https://doi.org/10.1021/jp100369x.

G. Gorbenko, V. Ioffe, P. Kinnunen, Biophys J., 93, 140-153 (2007). https://doi.org/10.1529/biophysj.106.102749.

G. Gorbenko, V. Ioffe, J. Molotkovsky, P. Kinnunen, Biochim. Biophys Acta, 1778, 1213-1221 (2008). https://doi.org/10.1016/j.bbamem.2007.09.027.

G. Ghosh, L. Panicker, K.C. Barick, 118, 1-6 (2014). https://doi.org/10.1016/j.colsurfb.2014.03.026.

L. Li, W. Xu, H. Liang, L. He, S. Liu, Y. Li, B. Li, Y. Chen, 126, 459-466 (2015). https://doi.org/10.1016/j.colsurfb.2014.12.051.

Опубліковано
2022-03-17
Цитовано
Як цитувати
Тарабара, У., Житняківська, О., Вус, К., Трусова, В., & Горбенко, Г. (2022). Флуоресцентне дослідження взаємодії між амілоїдними фібрилами інсуліну та білками. Східно-європейський фізичний журнал, (1), 96-104. https://doi.org/10.26565/2312-4334-2022-1-13

Найбільш популярні статті цього автора (авторів)

1 2 > >>